Deformable DETR is an efficient and fast-converging end-to-end object detector.

Overview

Deformable DETR

By Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.

This repository is an official implementation of the paper Deformable DETR: Deformable Transformers for End-to-End Object Detection.

Introduction

TL; DR. Deformable DETR is an efficient and fast-converging end-to-end object detector. It mitigates the high complexity and slow convergence issues of DETR via a novel sampling-based efficient attention mechanism.

deformable_detr

deformable_detr

Abstract. DETR has been recently proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance. However, it suffers from slow convergence and limited feature spatial resolution, due to the limitation of Transformer attention modules in processing image feature maps. To mitigate these issues, we proposed Deformable DETR, whose attention modules only attend to a small set of key sampling points around a reference. Deformable DETR can achieve better performance than DETR (especially on small objects) with 10× less training epochs. Extensive experiments on the COCO benchmark demonstrate the effectiveness of our approach.

License

This project is released under the Apache 2.0 license.

Changelog

See changelog.md for detailed logs of major changes.

Citing Deformable DETR

If you find Deformable DETR useful in your research, please consider citing:

@article{zhu2020deformable,
  title={Deformable DETR: Deformable Transformers for End-to-End Object Detection},
  author={Zhu, Xizhou and Su, Weijie and Lu, Lewei and Li, Bin and Wang, Xiaogang and Dai, Jifeng},
  journal={arXiv preprint arXiv:2010.04159},
  year={2020}
}

Main Results

Method Epochs AP APS APM APL params
(M)
FLOPs
(G)
Total
Train
Time
(GPU
hours)
Train
Speed
(GPU
hours
/epoch)
Infer
Speed
(FPS)
Batch
Infer
Speed
(FPS)
URL
Faster R-CNN + FPN 109 42.0 26.6 45.4 53.4 42 180 380 3.5 25.6 28.0 -
DETR 500 42.0 20.5 45.8 61.1 41 86 2000 4.0 27.0 38.3 -
DETR-DC5 500 43.3 22.5 47.3 61.1 41 187 7000 14.0 11.4 12.4 -
DETR-DC5 50 35.3 15.2 37.5 53.6 41 187 700 14.0 11.4 12.4 -
DETR-DC5+ 50 36.2 16.3 39.2 53.9 41 187 700 14.0 11.4 12.4 -
Deformable DETR
(single scale)
50 39.4 20.6 43.0 55.5 34 78 160 3.2 27.0 42.4 config
log
model
Deformable DETR
(single scale, DC5)
50 41.5 24.1 45.3 56.0 34 128 215 4.3 22.1 29.4 config
log
model
Deformable DETR 50 44.5 27.1 47.6 59.6 40 173 325 6.5 15.0 19.4 config
log
model
+ iterative bounding box refinement 50 46.2 28.3 49.2 61.5 41 173 325 6.5 15.0 19.4 config
log
model
++ two-stage Deformable DETR 50 46.9 29.6 50.1 61.6 41 173 340 6.8 14.5 18.8 config
log
model

Note:

  1. All models of Deformable DETR are trained with total batch size of 32.
  2. Training and inference speed are measured on NVIDIA Tesla V100 GPU.
  3. "Deformable DETR (single scale)" means only using res5 feature map (of stride 32) as input feature maps for Deformable Transformer Encoder.
  4. "DC5" means removing the stride in C5 stage of ResNet and add a dilation of 2 instead.
  5. "DETR-DC5+" indicates DETR-DC5 with some modifications, including using Focal Loss for bounding box classification and increasing number of object queries to 300.
  6. "Batch Infer Speed" refer to inference with batch size = 4 to maximize GPU utilization.
  7. The original implementation is based on our internal codebase. There are slight differences in the final accuracy and running time due to the plenty details in platform switch.

Installation

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

    We recommend you to use Anaconda to create a conda environment:

    conda create -n deformable_detr python=3.7 pip

    Then, activate the environment:

    conda activate deformable_detr
  • PyTorch>=1.5.1, torchvision>=0.6.1 (following instructions here)

    For example, if your CUDA version is 9.2, you could install pytorch and torchvision as following:

    conda install pytorch=1.5.1 torchvision=0.6.1 cudatoolkit=9.2 -c pytorch
  • Other requirements

    pip install -r requirements.txt

Compiling CUDA operators

cd ./models/ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py

Usage

Dataset preparation

Please download COCO 2017 dataset and organize them as following:

code_root/
└── data/
    └── coco/
        ├── train2017/
        ├── val2017/
        └── annotations/
        	├── instances_train2017.json
        	└── instances_val2017.json

Training

Training on single node

For example, the command for training Deformable DETR on 8 GPUs is as following:

GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 8 ./configs/r50_deformable_detr.sh

Training on multiple nodes

For example, the command for training Deformable DETR on 2 nodes of each with 8 GPUs is as following:

On node 1:

MASTER_ADDR=<IP address of node 1> NODE_RANK=0 GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 16 ./configs/r50_deformable_detr.sh

On node 2:

MASTER_ADDR=<IP address of node 1> NODE_RANK=1 GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 16 ./configs/r50_deformable_detr.sh

Training on slurm cluster

If you are using slurm cluster, you can simply run the following command to train on 1 node with 8 GPUs:

GPUS_PER_NODE=8 ./tools/run_dist_slurm.sh <partition> deformable_detr 8 configs/r50_deformable_detr.sh

Or 2 nodes of each with 8 GPUs:

GPUS_PER_NODE=8 ./tools/run_dist_slurm.sh <partition> deformable_detr 16 configs/r50_deformable_detr.sh

Some tips to speed-up training

  • If your file system is slow to read images, you may consider enabling '--cache_mode' option to load whole dataset into memory at the beginning of training.
  • You may increase the batch size to maximize the GPU utilization, according to GPU memory of yours, e.g., set '--batch_size 3' or '--batch_size 4'.

Evaluation

You can get the config file and pretrained model of Deformable DETR (the link is in "Main Results" session), then run following command to evaluate it on COCO 2017 validation set:

<path to config file> --resume <path to pre-trained model> --eval

You can also run distributed evaluation by using ./tools/run_dist_launch.sh or ./tools/run_dist_slurm.sh.

Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Query Variation Generators This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelin

Gustavo Penha 12 Nov 20, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022