ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

Overview

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)
(Accepted by ICCV'21)

image

Abstract:

Snow is a highly complicated atmospheric phenomenon that usually contains snowflake, snow streak, and veiling effect (similar to the haze or the mist). In this literature, we propose a single image desnowing algorithm to address the diversity of snow particles in shape and size. First, to better represent the complex snow shape, we apply the dual-tree wavelet transform and propose a complex wavelet loss in the network. Second, we propose a hierarchical decomposition paradigm in our network for better understanding the different sizes of snow particles. Last, we propose a novel feature called the contradict channel (CC) for the snow scenes. We find that the regions containing the snow particles tend to have higher intensity in the CC than that in the snow-free regions. We leverage this discriminative feature to construct the contradict channel loss for improving the performance of snow removal. Moreover, due to the limitation of existing snow datasets, to simulate the snow scenarios comprehensively, we propose a large-scale dataset called Comprehensive Snow Dataset (CSD). Experimental results show that the proposed method can favorably outperform existing methods in three synthetic datasets and real-world datasets.

[Paper Download] [Dataset Download] [Poster Download] [Slide Download]

You can also refer our previous works on other low-level vision applications!

Desnowing-[JSTASR](ECCV'20)
Dehazing-[PMS-Net](CVPR'19) and [PMHLD](TIP'20)
Image Relighting-[MB-Net] (NTIRE'21 1st solution) and [S3Net] (NTIRE'21 3 rd solution)

Network Architecture

image

Dataset

We also propose a large scale dataset called Comprehensive Snow Dataset (CSD). It can present the snow scenes in more comprehensive way. You can leverage this dataset to train your network.
[Dataset Download] image

Setup and environment

To generate the recovered result you need:

  1. Python 3
  2. CPU or NVIDIA GPU + CUDA CuDNN
  3. tensorflow 1.15.0
  4. keras 2.3.0
  5. dtcwt 0.12.0

Training

python ./train.py --logPath ./your_log_path --dataPath /path_to_data/data.npy --gtPath /path_to_gt/gt.npy --batchsize batchsize --epochs epochs --modelPath ./path_to_exist_model/model_to_load.h5 --validation_num number_of_validation_image --steps_per_epoch steps_per_epoch

*data.npy should be numpy of training image whose shape is (number_of_image, 480, 640, 3). The range is (0, 255) and the datatype is uint8 or int.
*gt.npy should be numpy of ground truth image, whose shape is (number_of_image, 480, 640, 3). The range is (0, 255) and datatype is uint8 or int.

Example:

python ./train.py --logPath ./log --dataPath ./training_data.npy --gtPath ./training_gt.npy --batchsize 3 --epochs 1500 --modelPath ./previous_log/preivious_model.h5 --validation_num 200 --steps_per_epoch 80

Testing

$ python ./predict.py -dataroot ./your_dataroot -datatype datatype -predictpath ./output_path -batch_size batchsize

*datatype default: tif, jpg ,png

Examples

$ 
python ./predict.py -dataroot ./testImg -predictpath ./p -batch_size 3
python ./predict.py -dataroot ./testImg -datatype tif -predictpath ./p -batch_size 3

The pre-trained model can be downloaded from: https://ntucc365-my.sharepoint.com/:u:/g/personal/f05943089_ntu_edu_tw/EZtus9ex-GtNukLuSxWGmPIBEJIzRFMbEl0dFeZ_oTQnVQ?e=xnfqFL. Put the "finalmodel.h5" to the 'modelParam'.

Citations

Please cite this paper in your publications if it is helpful for your tasks:

Bibtex:

@inproceedings{chen2021all,
  title={ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-Tree Complex Wavelet Representation and Contradict Channel Loss},
  author={Chen, Wei-Ting and Fang, Hao-Yu and Hsieh, Cheng-Lin and Tsai, Cheng-Che and Chen, I and Ding, Jian-Jiun and Kuo, Sy-Yen and others},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={4196--4205},
  year={2021}
}
Owner
Wei-Ting Chen
Wei-Ting Chen
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022