BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

Overview

BabelCalib: A Universal Approach to Calibrating Central Cameras

Paper Datasets Conference Poster Youtube

This repository contains the MATLAB implementation of the BabelCalib calibration framework.

Method overview and result. (left) BabelCalib pipeline: the camera model proposal step ensures a good initialization (right) example result showing residuals of reprojected corners of test images.


Projection of calibration target from estimated calibration. Detected corners are red crosses, target projected using initial calibration are blue squares and using the final calibration are cyan circles.

Description

BabelCalib is a calibration framework that can estimate camera models for all types of central projection cameras. Calibration is robust and fully automatic. BabelCalib provides models for pinhole cameras with additive distortion as well as omni-directional cameras and catadioptric rigs. The supported camera models are listed under the solvers directory. BabelCalib supports calibration targets made of a collection of calibration boards, i.e., multiple planar targets. The method is agnostic to the pattern type on the calibration boards. It is robust to inaccurately localized corners, outlying detections and occluded targets.

Table of Contents


Installation

You need to clone the repository. The required library Visual Geometry Toolkit is added as a submodule. Please clone the repository with submodules:

git clone --recurse-submodules https://github.com/ylochman/babelcalib

If you already cloned the project without submodules, you can run

git submodule update --init --recursive 

Calibration

Calibration is performed by the function calibrate.m. The user provides the 2D<->3D correspondence of the corner detections in the captured images as well as the coordinates of the calibration board fiducials and the absolute poses of the calibration boards. Any calibration board of the target may be partially or fully occluded in a calibration image. The camera model is returned as well as diagnostics about the calibration.

function [model, res, corners, boards] = calibrate(corners, boards, imgsize, varargin)

Parameters:

  • corners : type corners
  • boards : type boards
  • imgsize : 1x2 array specifying the height and width of the images; all images in a capture are assumed to have the same dimensions.
  • varargin : optional arguments

Returns

Evaluation

BabelCalib adopts the train-test set methodology for fitting and evaluation. The training set contains the images used for calibration, and the test set contains held-out images for evaluation. Evaluating a model on test-set images demonstrates how well a calibration generalizes to unseen imagery. During testing, the intriniscs are kept fixed and only the poses of the camera are regressed. The RMS re-projection error is used to assess calibration quality. The poses are estimated by get_poses.m:

function [model, res, corners, boards] = get_poses(intrinsics, corners, boards, imgsize, varargin)

Parameters:

  • intrinsics : type model
  • corners : type corners
  • boards : type boards
  • imgsize : 1x2 array specifies the height and width of the images; all the images are assumed to have the same dimensions
  • varargin : optional arguments

Returns

Type Defintions

corners : 1xN struct array

Contains the set of 2D<->3D correspondences of the calibration board fiducials to the detected corners in each image. Here, we let N be the number of images; Kn be the number of detected corners in the n-th image, where (n=1,...,N); and B be the number of planar calibration boards.

field data type description
x 2xKn array 2D coordinates specifying the detected corners
cspond 2xKn array correspondences, where each column is a correspondence and the first row contains the indices to points and the second row contains indices to calibration board fiducials

boards : 1xB struct array

Contains the set of absolute poses for each of the B calibration boards of the target, where (b=1,...,B) indexes the calibration boards. Also specifies the coordinates of the fiducials on each of the calibration boards.

field data type description
Rt 3x4 array absolute orientation of each pose is encoded in the 3x4 pose matrix
X 2xKb array 2D coordinates of the fiducials on board b of the target. The coordinates are specified with respect to the 2D coordinate system attached to each board

model : struct

Contains the intrinsics and extrinsics of the regressed camera model. The number of parameters of the back-projection or projection model, denoted C, depends on the chosen camera model and model complexity.

field data type description
proj_model str name of the target projection model
proj_params 1xC array parameters of the projection/back-projection function
K 3x3 array camera calibration matrix (relating to A in the paper: K = inv(A))
Rt 3x4xN array camera poses stacked along the array depth

res : struct

Contains the information about the residuals, loss and initialization (minimal solution). Here, we let K be the total number of corners in all the images.

field data type description
loss double loss value
ir double inlier ratio
reprojerrs 1xK array reprojection errors
rms double root mean square reprojection error
wrms double root mean square weighted reprojection error (Huber weights)
info type info

info : struct

Contains additional information about the residuals, loss and initialization (minimal solution).

field data type description
dx 2xK array re-projection difference vectors: dx = x - x_hat
w 1xK array Huber weights on the norms of dx
residual 2xK array residuals: residual = w .* dx
cs 1xK array (boolean) consensus set indicators (1 if inlier, 0 otherwise)
min_model type model model corresponding to the minimal solution
min_res type res residual info corresponding to the minimal solution

cfg

cfg contains the optional configurations. Default values for the optional parameters are loaded from parse_cfg.m. These values can be changed by using the varargin parameter. Parameters values passed in by varargin take precedence. The varargin format is 'param_1', value_1, 'param_2', value_2, .... The parameter descriptions are grouped by which component of BabelCalib they change.

Solver configurations:

  • final_model - the selected camera model (default: 'kb')
  • final_complexity - a degree of the polynomial if the final model is polynomial, otherwise ignored (default: 4)

Sampler configurations:

  • min_trial_count - minimum number of iterations (default: 20)
  • max_trial_count - maximum number of iterations (default: 50)
  • max_num_retries - maximum number of sampling tries in the case of a solver failure (default: 50)
  • confidence - confidence rate (default: 0.995)
  • sample_size - the number of 3D<->2D correspondences that are sampled for each RANSAC iteration (default: 14)

RANSAC configurations:

  • display - toggles the display of verbose output of intermediate steps (default: true)
  • display_freq - frequency of output during the iterations of robust sampling. (default: 1)
  • irT - minimum inlier ratio to perform refinement (default: 0)

Refinement configurations:

  • reprojT - reprojection error threshold (default: 1.5)
  • max_iter - maximum number of iterations on the refinement (default: 50)

Examples and wrappers

2D<->3D correspondences

BabelCalib provides a convenience wrapper calib_run_opt1.m for running the calibration calibrate.m with a training set and evaluating get_poses.m with a test set.

Deltille

The Deltille detector is a robust deltille and checkerboard detector. It comes with detector library, example detector code, and MATLAB bindings. BabelCalib provides functions for calibration and evaluation using the Deltille software's outputs. Calibration from Deltille detections requires format conversion which is peformed by import_ODT.m. A complete example of using calibrate and get_poses with import_ODT is provided in calib_run_opt2.m.

Citation

If you find this work useful in your research, please consider citing:

@InProceedings{Lochman-ICCV21,
    title     = {BabelCalib: A Universal Approach to Calibrating Central Cameras},
    author    = {Lochman, Yaroslava and Liepieshov, Kostiantyn and Chen, Jianhui and Perdoch, Michal and Zach, Christopher and Pritts, James},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year      = {2021},
}

License

The software is licensed under the MIT license. Please see LICENSE for details.

A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022