BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

Overview

BabelCalib: A Universal Approach to Calibrating Central Cameras

Paper Datasets Conference Poster Youtube

This repository contains the MATLAB implementation of the BabelCalib calibration framework.

Method overview and result. (left) BabelCalib pipeline: the camera model proposal step ensures a good initialization (right) example result showing residuals of reprojected corners of test images.


Projection of calibration target from estimated calibration. Detected corners are red crosses, target projected using initial calibration are blue squares and using the final calibration are cyan circles.

Description

BabelCalib is a calibration framework that can estimate camera models for all types of central projection cameras. Calibration is robust and fully automatic. BabelCalib provides models for pinhole cameras with additive distortion as well as omni-directional cameras and catadioptric rigs. The supported camera models are listed under the solvers directory. BabelCalib supports calibration targets made of a collection of calibration boards, i.e., multiple planar targets. The method is agnostic to the pattern type on the calibration boards. It is robust to inaccurately localized corners, outlying detections and occluded targets.

Table of Contents


Installation

You need to clone the repository. The required library Visual Geometry Toolkit is added as a submodule. Please clone the repository with submodules:

git clone --recurse-submodules https://github.com/ylochman/babelcalib

If you already cloned the project without submodules, you can run

git submodule update --init --recursive 

Calibration

Calibration is performed by the function calibrate.m. The user provides the 2D<->3D correspondence of the corner detections in the captured images as well as the coordinates of the calibration board fiducials and the absolute poses of the calibration boards. Any calibration board of the target may be partially or fully occluded in a calibration image. The camera model is returned as well as diagnostics about the calibration.

function [model, res, corners, boards] = calibrate(corners, boards, imgsize, varargin)

Parameters:

  • corners : type corners
  • boards : type boards
  • imgsize : 1x2 array specifying the height and width of the images; all images in a capture are assumed to have the same dimensions.
  • varargin : optional arguments

Returns

Evaluation

BabelCalib adopts the train-test set methodology for fitting and evaluation. The training set contains the images used for calibration, and the test set contains held-out images for evaluation. Evaluating a model on test-set images demonstrates how well a calibration generalizes to unseen imagery. During testing, the intriniscs are kept fixed and only the poses of the camera are regressed. The RMS re-projection error is used to assess calibration quality. The poses are estimated by get_poses.m:

function [model, res, corners, boards] = get_poses(intrinsics, corners, boards, imgsize, varargin)

Parameters:

  • intrinsics : type model
  • corners : type corners
  • boards : type boards
  • imgsize : 1x2 array specifies the height and width of the images; all the images are assumed to have the same dimensions
  • varargin : optional arguments

Returns

Type Defintions

corners : 1xN struct array

Contains the set of 2D<->3D correspondences of the calibration board fiducials to the detected corners in each image. Here, we let N be the number of images; Kn be the number of detected corners in the n-th image, where (n=1,...,N); and B be the number of planar calibration boards.

field data type description
x 2xKn array 2D coordinates specifying the detected corners
cspond 2xKn array correspondences, where each column is a correspondence and the first row contains the indices to points and the second row contains indices to calibration board fiducials

boards : 1xB struct array

Contains the set of absolute poses for each of the B calibration boards of the target, where (b=1,...,B) indexes the calibration boards. Also specifies the coordinates of the fiducials on each of the calibration boards.

field data type description
Rt 3x4 array absolute orientation of each pose is encoded in the 3x4 pose matrix
X 2xKb array 2D coordinates of the fiducials on board b of the target. The coordinates are specified with respect to the 2D coordinate system attached to each board

model : struct

Contains the intrinsics and extrinsics of the regressed camera model. The number of parameters of the back-projection or projection model, denoted C, depends on the chosen camera model and model complexity.

field data type description
proj_model str name of the target projection model
proj_params 1xC array parameters of the projection/back-projection function
K 3x3 array camera calibration matrix (relating to A in the paper: K = inv(A))
Rt 3x4xN array camera poses stacked along the array depth

res : struct

Contains the information about the residuals, loss and initialization (minimal solution). Here, we let K be the total number of corners in all the images.

field data type description
loss double loss value
ir double inlier ratio
reprojerrs 1xK array reprojection errors
rms double root mean square reprojection error
wrms double root mean square weighted reprojection error (Huber weights)
info type info

info : struct

Contains additional information about the residuals, loss and initialization (minimal solution).

field data type description
dx 2xK array re-projection difference vectors: dx = x - x_hat
w 1xK array Huber weights on the norms of dx
residual 2xK array residuals: residual = w .* dx
cs 1xK array (boolean) consensus set indicators (1 if inlier, 0 otherwise)
min_model type model model corresponding to the minimal solution
min_res type res residual info corresponding to the minimal solution

cfg

cfg contains the optional configurations. Default values for the optional parameters are loaded from parse_cfg.m. These values can be changed by using the varargin parameter. Parameters values passed in by varargin take precedence. The varargin format is 'param_1', value_1, 'param_2', value_2, .... The parameter descriptions are grouped by which component of BabelCalib they change.

Solver configurations:

  • final_model - the selected camera model (default: 'kb')
  • final_complexity - a degree of the polynomial if the final model is polynomial, otherwise ignored (default: 4)

Sampler configurations:

  • min_trial_count - minimum number of iterations (default: 20)
  • max_trial_count - maximum number of iterations (default: 50)
  • max_num_retries - maximum number of sampling tries in the case of a solver failure (default: 50)
  • confidence - confidence rate (default: 0.995)
  • sample_size - the number of 3D<->2D correspondences that are sampled for each RANSAC iteration (default: 14)

RANSAC configurations:

  • display - toggles the display of verbose output of intermediate steps (default: true)
  • display_freq - frequency of output during the iterations of robust sampling. (default: 1)
  • irT - minimum inlier ratio to perform refinement (default: 0)

Refinement configurations:

  • reprojT - reprojection error threshold (default: 1.5)
  • max_iter - maximum number of iterations on the refinement (default: 50)

Examples and wrappers

2D<->3D correspondences

BabelCalib provides a convenience wrapper calib_run_opt1.m for running the calibration calibrate.m with a training set and evaluating get_poses.m with a test set.

Deltille

The Deltille detector is a robust deltille and checkerboard detector. It comes with detector library, example detector code, and MATLAB bindings. BabelCalib provides functions for calibration and evaluation using the Deltille software's outputs. Calibration from Deltille detections requires format conversion which is peformed by import_ODT.m. A complete example of using calibrate and get_poses with import_ODT is provided in calib_run_opt2.m.

Citation

If you find this work useful in your research, please consider citing:

@InProceedings{Lochman-ICCV21,
    title     = {BabelCalib: A Universal Approach to Calibrating Central Cameras},
    author    = {Lochman, Yaroslava and Liepieshov, Kostiantyn and Chen, Jianhui and Perdoch, Michal and Zach, Christopher and Pritts, James},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year      = {2021},
}

License

The software is licensed under the MIT license. Please see LICENSE for details.

Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022