JAX + dataclasses

Overview

jax_dataclasses

build mypy lint codecov

jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for:

  • Pytree registration. This allows dataclasses to be used at API boundaries in JAX. (necessary for function transformations, JIT, etc)
  • Serialization via flax.serialization.

Notably, jax_dataclasses is designed to work seamlessly with static analysis, including tools like mypy and jedi.

Heavily influenced by some great existing work; see Alternatives for comparisons.

Installation

pip install jax_dataclasses

Core interface

jax_dataclasses is meant to provide a drop-in replacement for dataclasses.dataclass:

  • jax_dataclasses.pytree_dataclass has the same interface as dataclasses.dataclass, but also registers the target class as a pytree container.
  • jax_dataclasses.static_field has the same interface as dataclasses.field, but will also mark the field as static. In a pytree node, static fields will be treated as part of the treedef instead of as a child of the node; all fields that are not explicitly marked static should contain arrays or child nodes.

We also provide several aliases: jax_dataclasses.[field, asdict, astuples, is_dataclass, replace] are all identical to their counterparts in the standard dataclasses library.

Mutations

All dataclasses are automatically marked as frozen and thus immutable (even when no frozen= parameter is passed in). To make changes to nested structures easier, we provide an interface that will (a) make a copy of a pytree and (b) return a context in which any of that copy's contained dataclasses are temporarily mutable:

from jax import numpy as jnp
import jax_dataclasses

@jax_dataclasses.pytree_dataclass
class Node:
  child: jnp.ndarray

obj = Node(child=jnp.zeros(3))

with jax_dataclasses.copy_and_mutate(obj) as obj_updated:
  # Make mutations to the dataclass. This is primarily useful for nested
  # dataclasses.
  #
  # Also does input validation: if the treedef, leaf shapes, or dtypes of `obj`
  # and `obj_updated` don't match, an AssertionError will be raised.
  # This can be disabled with a `validate=False` argument.
  obj_updated.child = jnp.ones(3)

print(obj)
print(obj_updated)

Alternatives

A few other solutions exist for automatically integrating dataclass-style objects into pytree structures. Great ones include: chex.dataclass, flax.struct, and tjax.dataclass. These all influenced this library.

The main differentiators of jax_dataclasses are:

  • Static analysis support. Libraries like dataclasses and attrs rely on tooling-specific custom plugins for static analysis, which don't exist for chex or flax. tjax has a custom mypy plugin to enable type checking, but isn't supported by other tools. Because @jax_dataclasses.pytree_dataclass has the same API as @dataclasses.dataclass, it can include pytree registration behavior at runtime while being treated as the standard decorator during static analysis. This means that all static checkers, language servers, and autocomplete engines that support the standard dataclasses library should work out of the box with jax_dataclasses.

  • Nested dataclasses. Making replacements/modifications in deeply nested dataclasses is generally very frustrating. The three alternatives all introduce a .replace(self, ...) method to dataclasses that's a bit more convenient than the traditional dataclasses.replace(obj, ...) API for shallow changes, but still becomes really cumbersome to use when dataclasses are nested. jax_dataclasses.copy_and_mutate() is introduced to address this.

  • Static field support. Parameters that should not be traced in JAX should be marked as static. This is supported in flax, tjax, and jax_dataclasses, but not chex.

  • Serialization. When working with flax, being able to serialize dataclasses is really handy. This is supported in flax.struct (naturally) and jax_dataclasses, but not chex or tjax.

Misc

This code was originally written for and factored out of jaxfg, where Nick Heppert provided valuable feedback!

Comments
  • Fix infinite loop for cycles in pytrees

    Fix infinite loop for cycles in pytrees

    I have a rather big dataclass to describe a robot model, that includes a graph of links and a list of joints. Each node of the graph references the parent link and all the child links. Each joint object references its parent and child links.

    When I try to copy_and_mutate any of these objects, maybe due to all this nesting, an infinite loop occurs. I suspect that the existing logic tries to unfreeze all the leafs of the pytree, but the high interconnection and the properties of mutable Python types lead to a never ending unfreezing process.

    This PR addresses this edge case by storing the list of IDs of objects already unfreezed. It solves my problem, and it should not add any noticeable performance degradation.

    cc @brentyi

    opened by diegoferigo 10
  • Delayed initialisation of static fields

    Delayed initialisation of static fields

    First of all, thank you for the amazing library! I have recently discovered jax_dataclasses and I have decided to port my messy JAX functional code to a more organised object-oriented code based on jax_dataclasses.

    In my application, I have some derived quantities of the attributes of the dataclass that are static values used to determine the shape of tensors during JIT compilation. I would like to include them as attribute of the dataclass, but I'm getting an error and I would like to know if there is workaround.

    Here is a simple example, where the attribute _sum is a derived static field that depends on the constant value of the array a.

    import jax
    import jax.numpy as jnp
    import jax_dataclasses as jdc
    
    @jdc.pytree_dataclass()
    class PyTreeDataclass:
        a: jnp.ndarray
        _sum: int = jdc.static_field(init=False, repr=False)
    
        def __post_init__(self):
            object.__setattr__(self, "_sum", self.a.sum().item())
    
    def print_pytree(obj):
        print(obj._sum)
    
    obj = PyTreeDataclass(jnp.arange(4))
    print_pytree(obj)
    jax.jit(print_pytree)(obj)
    

    The non-jitted version works, but when print_pytree is jitted I get the following error.

    File "jax_dataclasses_issue.py", line 14, in __post_init__
        object.__setattr__(self, "_sum", self.a.sum().item())
    AttributeError: 'bool' object has no attribute 'sum'
    

    Is there a way to compute in the __post_init__ the value of static fields not initialized in __init__ that depend on jnp.ndarray attributes of the dataclass?

    opened by lucagrementieri 4
  • `jax.tree_leaves` is deprecated

    `jax.tree_leaves` is deprecated

    The file jax_dataclasses/_copy_and_mutate.py raises many warnings complaining a deprecated function.

    FutureWarning: jax.tree_leaves is deprecated, and will be removed in a future release. Use jax.tree_util.tree_leaves instead.
    
    opened by lucagrementieri 1
  • Use jaxtyping to enrich type annotations

    Use jaxtyping to enrich type annotations

    I just discovered the jaxtyping library and I think it could be an interesting alternative to the current typing system proposed by jax_dataclasses.

    jaxtyping supports variable-size axes and symbolic expressions in terms of other variable-size axes, see https://github.com/google/jaxtyping/blob/main/API.md and it has very few requirements.

    Do you think that it could be added to jax_dataclasses?

    opened by lucagrementieri 4
  • Serialization of static fields?

    Serialization of static fields?

    Thanks for the handy library!

    I have a pytree_dataclass that contains a few static_fields that I would like to have serialized by the facilities in flax.serialize. I noticed that jax_dataclasses.asdict handles these, but that flax.serialization.to_state_dict and flax.serialization.to_bytes both ignore them. What is the correct way (if any) to have these fields included in flax's serialization? Should I be using another technique?

    import jax_dataclasses as jdc
    from jax import numpy as jnp
    import flax.serialization as fs
    
    
    @jdc.pytree_dataclass
    class Demo:
        a: jnp.ndarray = jnp.ones(3)
        b: bool = jdc.static_field(default=False)
    
    
    demo = Demo()
    print(f'{jdc.asdict(demo) = }')
    print(f'{fs.to_state_dict(demo) = }')
    print(f'{fs.from_bytes(Demo, fs.to_bytes(demo)) = }')
    
    # jdc.asdict(demo) = {'a': array([1., 1., 1.]), 'b': False}
    # fs.to_state_dict(demo) = {'a': DeviceArray([1., 1., 1.], dtype=float64)}
    # fs.from_bytes(Demo, fs.to_bytes(demo)) = {'a': array([1., 1., 1.])}
    

    Thanks in advance!

    opened by erdmann 3
Releases(v1.5.1)
Owner
Brent Yi
Brent Yi
DiSECt: Differentiable Simulator for Robotic Cutting

DiSECt: Differentiable Simulator for Robotic Cutting Website | Paper | Dataset | Video | Blog post DiSECt is a simulator for the cutting of deformable

NVIDIA Research Projects 73 Oct 29, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022