JAX + dataclasses

Overview

jax_dataclasses

build mypy lint codecov

jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for:

  • Pytree registration. This allows dataclasses to be used at API boundaries in JAX. (necessary for function transformations, JIT, etc)
  • Serialization via flax.serialization.

Notably, jax_dataclasses is designed to work seamlessly with static analysis, including tools like mypy and jedi.

Heavily influenced by some great existing work; see Alternatives for comparisons.

Installation

pip install jax_dataclasses

Core interface

jax_dataclasses is meant to provide a drop-in replacement for dataclasses.dataclass:

  • jax_dataclasses.pytree_dataclass has the same interface as dataclasses.dataclass, but also registers the target class as a pytree container.
  • jax_dataclasses.static_field has the same interface as dataclasses.field, but will also mark the field as static. In a pytree node, static fields will be treated as part of the treedef instead of as a child of the node; all fields that are not explicitly marked static should contain arrays or child nodes.

We also provide several aliases: jax_dataclasses.[field, asdict, astuples, is_dataclass, replace] are all identical to their counterparts in the standard dataclasses library.

Mutations

All dataclasses are automatically marked as frozen and thus immutable (even when no frozen= parameter is passed in). To make changes to nested structures easier, we provide an interface that will (a) make a copy of a pytree and (b) return a context in which any of that copy's contained dataclasses are temporarily mutable:

from jax import numpy as jnp
import jax_dataclasses

@jax_dataclasses.pytree_dataclass
class Node:
  child: jnp.ndarray

obj = Node(child=jnp.zeros(3))

with jax_dataclasses.copy_and_mutate(obj) as obj_updated:
  # Make mutations to the dataclass. This is primarily useful for nested
  # dataclasses.
  #
  # Also does input validation: if the treedef, leaf shapes, or dtypes of `obj`
  # and `obj_updated` don't match, an AssertionError will be raised.
  # This can be disabled with a `validate=False` argument.
  obj_updated.child = jnp.ones(3)

print(obj)
print(obj_updated)

Alternatives

A few other solutions exist for automatically integrating dataclass-style objects into pytree structures. Great ones include: chex.dataclass, flax.struct, and tjax.dataclass. These all influenced this library.

The main differentiators of jax_dataclasses are:

  • Static analysis support. Libraries like dataclasses and attrs rely on tooling-specific custom plugins for static analysis, which don't exist for chex or flax. tjax has a custom mypy plugin to enable type checking, but isn't supported by other tools. Because @jax_dataclasses.pytree_dataclass has the same API as @dataclasses.dataclass, it can include pytree registration behavior at runtime while being treated as the standard decorator during static analysis. This means that all static checkers, language servers, and autocomplete engines that support the standard dataclasses library should work out of the box with jax_dataclasses.

  • Nested dataclasses. Making replacements/modifications in deeply nested dataclasses is generally very frustrating. The three alternatives all introduce a .replace(self, ...) method to dataclasses that's a bit more convenient than the traditional dataclasses.replace(obj, ...) API for shallow changes, but still becomes really cumbersome to use when dataclasses are nested. jax_dataclasses.copy_and_mutate() is introduced to address this.

  • Static field support. Parameters that should not be traced in JAX should be marked as static. This is supported in flax, tjax, and jax_dataclasses, but not chex.

  • Serialization. When working with flax, being able to serialize dataclasses is really handy. This is supported in flax.struct (naturally) and jax_dataclasses, but not chex or tjax.

Misc

This code was originally written for and factored out of jaxfg, where Nick Heppert provided valuable feedback!

Comments
  • Fix infinite loop for cycles in pytrees

    Fix infinite loop for cycles in pytrees

    I have a rather big dataclass to describe a robot model, that includes a graph of links and a list of joints. Each node of the graph references the parent link and all the child links. Each joint object references its parent and child links.

    When I try to copy_and_mutate any of these objects, maybe due to all this nesting, an infinite loop occurs. I suspect that the existing logic tries to unfreeze all the leafs of the pytree, but the high interconnection and the properties of mutable Python types lead to a never ending unfreezing process.

    This PR addresses this edge case by storing the list of IDs of objects already unfreezed. It solves my problem, and it should not add any noticeable performance degradation.

    cc @brentyi

    opened by diegoferigo 10
  • Delayed initialisation of static fields

    Delayed initialisation of static fields

    First of all, thank you for the amazing library! I have recently discovered jax_dataclasses and I have decided to port my messy JAX functional code to a more organised object-oriented code based on jax_dataclasses.

    In my application, I have some derived quantities of the attributes of the dataclass that are static values used to determine the shape of tensors during JIT compilation. I would like to include them as attribute of the dataclass, but I'm getting an error and I would like to know if there is workaround.

    Here is a simple example, where the attribute _sum is a derived static field that depends on the constant value of the array a.

    import jax
    import jax.numpy as jnp
    import jax_dataclasses as jdc
    
    @jdc.pytree_dataclass()
    class PyTreeDataclass:
        a: jnp.ndarray
        _sum: int = jdc.static_field(init=False, repr=False)
    
        def __post_init__(self):
            object.__setattr__(self, "_sum", self.a.sum().item())
    
    def print_pytree(obj):
        print(obj._sum)
    
    obj = PyTreeDataclass(jnp.arange(4))
    print_pytree(obj)
    jax.jit(print_pytree)(obj)
    

    The non-jitted version works, but when print_pytree is jitted I get the following error.

    File "jax_dataclasses_issue.py", line 14, in __post_init__
        object.__setattr__(self, "_sum", self.a.sum().item())
    AttributeError: 'bool' object has no attribute 'sum'
    

    Is there a way to compute in the __post_init__ the value of static fields not initialized in __init__ that depend on jnp.ndarray attributes of the dataclass?

    opened by lucagrementieri 4
  • `jax.tree_leaves` is deprecated

    `jax.tree_leaves` is deprecated

    The file jax_dataclasses/_copy_and_mutate.py raises many warnings complaining a deprecated function.

    FutureWarning: jax.tree_leaves is deprecated, and will be removed in a future release. Use jax.tree_util.tree_leaves instead.
    
    opened by lucagrementieri 1
  • Use jaxtyping to enrich type annotations

    Use jaxtyping to enrich type annotations

    I just discovered the jaxtyping library and I think it could be an interesting alternative to the current typing system proposed by jax_dataclasses.

    jaxtyping supports variable-size axes and symbolic expressions in terms of other variable-size axes, see https://github.com/google/jaxtyping/blob/main/API.md and it has very few requirements.

    Do you think that it could be added to jax_dataclasses?

    opened by lucagrementieri 4
  • Serialization of static fields?

    Serialization of static fields?

    Thanks for the handy library!

    I have a pytree_dataclass that contains a few static_fields that I would like to have serialized by the facilities in flax.serialize. I noticed that jax_dataclasses.asdict handles these, but that flax.serialization.to_state_dict and flax.serialization.to_bytes both ignore them. What is the correct way (if any) to have these fields included in flax's serialization? Should I be using another technique?

    import jax_dataclasses as jdc
    from jax import numpy as jnp
    import flax.serialization as fs
    
    
    @jdc.pytree_dataclass
    class Demo:
        a: jnp.ndarray = jnp.ones(3)
        b: bool = jdc.static_field(default=False)
    
    
    demo = Demo()
    print(f'{jdc.asdict(demo) = }')
    print(f'{fs.to_state_dict(demo) = }')
    print(f'{fs.from_bytes(Demo, fs.to_bytes(demo)) = }')
    
    # jdc.asdict(demo) = {'a': array([1., 1., 1.]), 'b': False}
    # fs.to_state_dict(demo) = {'a': DeviceArray([1., 1., 1.], dtype=float64)}
    # fs.from_bytes(Demo, fs.to_bytes(demo)) = {'a': array([1., 1., 1.])}
    

    Thanks in advance!

    opened by erdmann 3
Releases(v1.5.1)
Owner
Brent Yi
Brent Yi
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022