JAX + dataclasses

Overview

jax_dataclasses

build mypy lint codecov

jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for:

  • Pytree registration. This allows dataclasses to be used at API boundaries in JAX. (necessary for function transformations, JIT, etc)
  • Serialization via flax.serialization.

Notably, jax_dataclasses is designed to work seamlessly with static analysis, including tools like mypy and jedi.

Heavily influenced by some great existing work; see Alternatives for comparisons.

Installation

pip install jax_dataclasses

Core interface

jax_dataclasses is meant to provide a drop-in replacement for dataclasses.dataclass:

  • jax_dataclasses.pytree_dataclass has the same interface as dataclasses.dataclass, but also registers the target class as a pytree container.
  • jax_dataclasses.static_field has the same interface as dataclasses.field, but will also mark the field as static. In a pytree node, static fields will be treated as part of the treedef instead of as a child of the node; all fields that are not explicitly marked static should contain arrays or child nodes.

We also provide several aliases: jax_dataclasses.[field, asdict, astuples, is_dataclass, replace] are all identical to their counterparts in the standard dataclasses library.

Mutations

All dataclasses are automatically marked as frozen and thus immutable (even when no frozen= parameter is passed in). To make changes to nested structures easier, we provide an interface that will (a) make a copy of a pytree and (b) return a context in which any of that copy's contained dataclasses are temporarily mutable:

from jax import numpy as jnp
import jax_dataclasses

@jax_dataclasses.pytree_dataclass
class Node:
  child: jnp.ndarray

obj = Node(child=jnp.zeros(3))

with jax_dataclasses.copy_and_mutate(obj) as obj_updated:
  # Make mutations to the dataclass. This is primarily useful for nested
  # dataclasses.
  #
  # Also does input validation: if the treedef, leaf shapes, or dtypes of `obj`
  # and `obj_updated` don't match, an AssertionError will be raised.
  # This can be disabled with a `validate=False` argument.
  obj_updated.child = jnp.ones(3)

print(obj)
print(obj_updated)

Alternatives

A few other solutions exist for automatically integrating dataclass-style objects into pytree structures. Great ones include: chex.dataclass, flax.struct, and tjax.dataclass. These all influenced this library.

The main differentiators of jax_dataclasses are:

  • Static analysis support. Libraries like dataclasses and attrs rely on tooling-specific custom plugins for static analysis, which don't exist for chex or flax. tjax has a custom mypy plugin to enable type checking, but isn't supported by other tools. Because @jax_dataclasses.pytree_dataclass has the same API as @dataclasses.dataclass, it can include pytree registration behavior at runtime while being treated as the standard decorator during static analysis. This means that all static checkers, language servers, and autocomplete engines that support the standard dataclasses library should work out of the box with jax_dataclasses.

  • Nested dataclasses. Making replacements/modifications in deeply nested dataclasses is generally very frustrating. The three alternatives all introduce a .replace(self, ...) method to dataclasses that's a bit more convenient than the traditional dataclasses.replace(obj, ...) API for shallow changes, but still becomes really cumbersome to use when dataclasses are nested. jax_dataclasses.copy_and_mutate() is introduced to address this.

  • Static field support. Parameters that should not be traced in JAX should be marked as static. This is supported in flax, tjax, and jax_dataclasses, but not chex.

  • Serialization. When working with flax, being able to serialize dataclasses is really handy. This is supported in flax.struct (naturally) and jax_dataclasses, but not chex or tjax.

Misc

This code was originally written for and factored out of jaxfg, where Nick Heppert provided valuable feedback!

Comments
  • Fix infinite loop for cycles in pytrees

    Fix infinite loop for cycles in pytrees

    I have a rather big dataclass to describe a robot model, that includes a graph of links and a list of joints. Each node of the graph references the parent link and all the child links. Each joint object references its parent and child links.

    When I try to copy_and_mutate any of these objects, maybe due to all this nesting, an infinite loop occurs. I suspect that the existing logic tries to unfreeze all the leafs of the pytree, but the high interconnection and the properties of mutable Python types lead to a never ending unfreezing process.

    This PR addresses this edge case by storing the list of IDs of objects already unfreezed. It solves my problem, and it should not add any noticeable performance degradation.

    cc @brentyi

    opened by diegoferigo 10
  • Delayed initialisation of static fields

    Delayed initialisation of static fields

    First of all, thank you for the amazing library! I have recently discovered jax_dataclasses and I have decided to port my messy JAX functional code to a more organised object-oriented code based on jax_dataclasses.

    In my application, I have some derived quantities of the attributes of the dataclass that are static values used to determine the shape of tensors during JIT compilation. I would like to include them as attribute of the dataclass, but I'm getting an error and I would like to know if there is workaround.

    Here is a simple example, where the attribute _sum is a derived static field that depends on the constant value of the array a.

    import jax
    import jax.numpy as jnp
    import jax_dataclasses as jdc
    
    @jdc.pytree_dataclass()
    class PyTreeDataclass:
        a: jnp.ndarray
        _sum: int = jdc.static_field(init=False, repr=False)
    
        def __post_init__(self):
            object.__setattr__(self, "_sum", self.a.sum().item())
    
    def print_pytree(obj):
        print(obj._sum)
    
    obj = PyTreeDataclass(jnp.arange(4))
    print_pytree(obj)
    jax.jit(print_pytree)(obj)
    

    The non-jitted version works, but when print_pytree is jitted I get the following error.

    File "jax_dataclasses_issue.py", line 14, in __post_init__
        object.__setattr__(self, "_sum", self.a.sum().item())
    AttributeError: 'bool' object has no attribute 'sum'
    

    Is there a way to compute in the __post_init__ the value of static fields not initialized in __init__ that depend on jnp.ndarray attributes of the dataclass?

    opened by lucagrementieri 4
  • `jax.tree_leaves` is deprecated

    `jax.tree_leaves` is deprecated

    The file jax_dataclasses/_copy_and_mutate.py raises many warnings complaining a deprecated function.

    FutureWarning: jax.tree_leaves is deprecated, and will be removed in a future release. Use jax.tree_util.tree_leaves instead.
    
    opened by lucagrementieri 1
  • Use jaxtyping to enrich type annotations

    Use jaxtyping to enrich type annotations

    I just discovered the jaxtyping library and I think it could be an interesting alternative to the current typing system proposed by jax_dataclasses.

    jaxtyping supports variable-size axes and symbolic expressions in terms of other variable-size axes, see https://github.com/google/jaxtyping/blob/main/API.md and it has very few requirements.

    Do you think that it could be added to jax_dataclasses?

    opened by lucagrementieri 4
  • Serialization of static fields?

    Serialization of static fields?

    Thanks for the handy library!

    I have a pytree_dataclass that contains a few static_fields that I would like to have serialized by the facilities in flax.serialize. I noticed that jax_dataclasses.asdict handles these, but that flax.serialization.to_state_dict and flax.serialization.to_bytes both ignore them. What is the correct way (if any) to have these fields included in flax's serialization? Should I be using another technique?

    import jax_dataclasses as jdc
    from jax import numpy as jnp
    import flax.serialization as fs
    
    
    @jdc.pytree_dataclass
    class Demo:
        a: jnp.ndarray = jnp.ones(3)
        b: bool = jdc.static_field(default=False)
    
    
    demo = Demo()
    print(f'{jdc.asdict(demo) = }')
    print(f'{fs.to_state_dict(demo) = }')
    print(f'{fs.from_bytes(Demo, fs.to_bytes(demo)) = }')
    
    # jdc.asdict(demo) = {'a': array([1., 1., 1.]), 'b': False}
    # fs.to_state_dict(demo) = {'a': DeviceArray([1., 1., 1.], dtype=float64)}
    # fs.from_bytes(Demo, fs.to_bytes(demo)) = {'a': array([1., 1., 1.])}
    

    Thanks in advance!

    opened by erdmann 3
Releases(v1.5.1)
Owner
Brent Yi
Brent Yi
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022