[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

Related tags

Deep Learninginsgen
Overview

InsGen - Data-Efficient Instance Generation from Instance Discrimination

image

Data-Efficient Instance Generation from Instance Discrimination
Ceyuan Yang, Yujun Shen, Yinghao Xu, Bolei Zhou
arXiv preprint arXiv: 2106.04566

[Paper] [Project Page]

In this work, we develop a novel data-efficient Instance Generation (InsGen) method for training GANs with limited data. With the instance discrimination as an auxiliary task, our method makes the best use of both real and fake images to train the discriminator. The discriminator in turn guides the generator to synthesize as many diverse images as possible. Experiments under different data regimes show that InsGen brings a substantial improvement over the baseline in terms of both image quality and image diversity, and outperforms previous data augmentation algorithms by a large margin.

Qualitative results

Here we provide some synthesized samples with different numbers of training images and correspoding FID. Full codebase and weights are coming soon. image

Inference

Here, all pretrained models can be downloaded from Google Drive:

Model FID Link
AFHQ512-CAT 2.60 link
AFHQ512-DOG 5.44 link
AFHQ512-WILD 1.77 link
Model FID Link
FFHQ256-2K 11.92 link
FFHQ256-10K 4.90 link
FFHQ256-140K 3.31 link

You can download one of them and put it under MODEL_ZOO directory, then synthesize images via

# Generate AFHQ512-CAT with truncation.
python generate.py --network=${MODEL_ZOO}/afhqcat.pkl \
                   --outdir=${TARGET_DIR} \
                   --trunc=0.7 \
                   --seeds=0-10

Training

This repository is built based on styleGAN2-ada-pytorch. Therefore, please prepare datasets first use dataset_tool.py. On top of Generative Adversarial Networks (GANs), we introduce contrastive loss into the training of discriminator, following MoCo. Concretely, the discriminator is used to extract features from images (either real or synthesized) and then trained with an auxiliary task by distinguishing every individual image.

As described in training/contrastive_head.py, we add two addition heads on top of the original discriminator. These two heads are used to project features extracted from real and fake data onto a unit ball respectively. More details can be found in paper. Note that InsGen can be easily applied to any GAN model by merely introducing two contrastive heads. According to MoCo, the feature extractor should be updated in a momentum manner. Here, in InsGen, the contrastive heads are updated in the forward() function, while the discriminator is updated in training/training_loop.py (see D_ema).

Please use the following command to start your own training:

python train.py --gpus=8 \
                --data=${DATA_PATH} \
                --cfg=paper256 \
                --outdir=training_example

In this example, the results are saved to a created director training_example. --cfg specifies the training configuration, which can be further customized with additional options:

  • --no_insgen disables InsGen, back to original StyleGAN2-ADA.
  • --rqs overrides the number of real image queue size. (default: 5% of the total number of training samples)
  • --fqs overrides the number of fake image queue size. More samples are beneficial, especially when the training samples are limited. (default: 5% of the total number of training samples)
  • --gamma overrides the R1 gamma (i.e., gradient penalty). As described in styleGAN2-ada-pytorch, training can be sensitive to this hyper-parameter. It would be better to try some different values. Here, we recommend using a smaller one than that in original StyleGAN2-ADA.

More functions would be supported after this projest is merged into our genforce. Please stay tuned!

License

This work is made available under the Nvidia Source Code License.

Acknowledgements

We thank Janne Hellsten and Tero Karras for the pytorch version codebase of their styleGAN2-ada-pytorch.

BibTeX

@article{yang2021insgen,
  title   = {Data-Efficient Instance Generation from Instance Discrimination},
  author  = {Yang, Ceyuan and Shen, Yujun and Xu, Yinghao and Zhou, Bolei},
  journal = {arXiv preprint arXiv:2106.04566},
  year    = {2021}
}
Owner
GenForce: May Generative Force Be with You
Research on Generative Modeling in Zhou Group
GenForce: May Generative Force Be with You
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023