Benchmark for evaluating open-ended generation

Overview

OpenMEVA

Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging.

OpenMEVA is a benchmark for evaluating open-ended story generation metrics (Please refer to the Paper List for more information about Open-eNded Language Generation tasks) described in the paper: OpenMEVA: A Benchmark for Evaluating Open-ended Story Generation Metrics (ACL 2021 Long Paper). Besides, OpenMEVA also provides an open-source and extensible toolkit for metric implementation, evaluation, comparison, and analysis, as well as data perturbation techniques to help generate large numbers of customized test cases. We expect the toolkit to empower fast development of automatic metrics.

Contents

Introduction for Language Generation Evaluation

Since human evaluation is time-consuming, expensive, and difficult to reproduce, the community commonly uses automatic metrics for evaluation. We roughly divide existing metrics as follows:

  • Previous studies in conditional language generation tasks (e.g., machine translation) have developed several successful referenced metrics, which roughly quantify the lexical overlap (e.g., BLEU) or semantic entailment (e.g., BertScore) between a generated sample and the reference.
  • Referenced metrics correlate poorly with human judgments when evaluating open-ended language generation. Specifically, a generated sample can be reasonable if it is coherent to the given input, and self-consistent within its own context but not necessarily being similar to the reference in literal or semantics. To address the one-to-many issue, unreferenced metrics (e.g., UNION) are proposed to measure the quality of a generated sample without any reference.
  • Besides, some researchers propose to combine referenced and unreferenced metrics, i.e. hybrid metrics, which usually average two individual metric scores (e.g. RUBER) or learn from human preference (e.g., ADEM). However, ADEM is reported to lack generalization and robustness with limited human annotation.

The existing generation models are still far from human ability to generate reasonable texts, particularly for open-ended language generation tasks such as story generation. One important factor that hinders the research is the lack of powerful metrics for measuring generation quality. Therefore, we propose OpenMEVA as the standard paradigm for measuring progress of metrics.

Install

Clone the repository from our github page (don't forget to star us!)

git clone https://github.com/thu-coai/OpenMEVA.git

Then install all the requirements:

pip install -r requirements.txt

Then install the package with

python setup.py install

If you also want to modify the code, run this:

python setup.py develop

Toolkit

I. Metrics Interface

1. Metric List

We publish the standard implementation for the following metrics:

2. Usage

It is handy to construct a metric object and use it to evaluate given examples:

from eva.bleu import BLEU
metric = BLEU()

# for more information about the metric
print(metric.info)

# data is a list of dictionary [{"context": ..., "candidate":..., "reference": ...}]
print(metric.compute(data))

We present a python file test.py as an instruction to access the API.

These metrics are not exhaustive, it is a starting point for further metric research. We welcome any pull request for other metrics (requiring implementation of only three methods including __init__, info, compute).

3. Training Learnable Metrics

Execute the following command for training learnable metrics:

cd ./eva/model

# training language model for computing forward perplexity
bash ./run_language_modeling.sh

# training the unreferenced model for computing RUBER (RNN version)
bash ./run_ruber_unrefer.sh

# training the unreferenced model for computing RUBER (BERT version)
bash ./run_ruber_unrefer_bert.sh

# training the model for computing UNION
bash ./run_union.sh

II. Evaluating Human Scores

The python file test.py also includes detailed instruction to access the API for evaluating human scores.

1. Constructing

from eva.heva import Heva

# list of all possible human scores (int/float/str).
all_possible_score_list = [1,2,3,4,5]

# construct an object for following evaluation
heva = Heva(all_possible_score_list)

2. Consistency of human scores

# list of human score list, each row includes all the human scores for an example
human_score_list = [[1,3,2], [1,3,3], [2,3,1], ...]

print(heva.consistency(human_score_list))
# {"Fleiss's kappa": ..., "ICC correlation": ..., "Kendall-w":..., "krippendorff's alpha":...}
# the results includes correlation and p-value for significance test.

3. Mean Test for scores of examples from different source

# list of metric scores (float)
metric_score_1, metric_score_2 = [3.2, 2.4, 3.1,...], [3.5, 1.2, 2.3, ...]

# T-test for the means of two independent samples of scores.
print(heva.mean_test(metric_score_1, metric_score_2))
# {"t-statistic": ..., "p-value": ...}

4. Distribution of human scores

# list of human scores (float)
human_score = [2.0, 4.2, 1.2, 4.9, 2.6, 3.1, 4.0, 1.5,...]

# path for saving the figure of distribution
figure_path = "./figure"

# indicating the source of the annotated examples. default: ""
model_name = "gpt"

# plot the figure of distribution of human scores
heva.save_distribution_figure(score=human_score, save_path=figure_path, model_name=model_name, ymin=0, ymax=50)

5. Correlation between human and metric scores

# list of human scores (float)
human_score = [2.0, 4.2, 1.2, 4.9, 2.6, 3.1, 4.0, 1.5,...]

# list of metric scores (float)
metric_score = [3.2, 2.4, 3.1, 3.5, 1.2, 2.3, 3.5, 1.1,...]

# computing correlation
print(heva.correlation(metric_score, human_score))

# path for saving the figure of distribution
figure_path = "./figure"

# indicating the source of the metric scores. default: ""
metric_name = "bleu"

# plot the figure of metric score vs. human scores
heva.save_correlation_figure(human_score, metric_score, save_path=figure_path, metric_name=metric_name)

III. Perturbation Techniques

1. Perturbation List

We provide perturbation techniques in following aspects to create large scale test cases for evaluating comprehensive capabilities of metrics:

  • Lexical repetition

    • Repeating n-grams or sentences:

      He stepped on the stage and stepped on the stage.
  • Semantic repetition:

    • Repeating sentences with paraphrases by back translation:

      He has been from Chicago to Florida. He moved to Florida from Chicago.

  • Character behavior:

    • Reordering the subject and object of a sentence:

      Lars looked at the girl with desire.→ the girl looked at Lars with desire.
    • Substituting the personal pronouns referring to other characters:

      her mother took them to ... → their mother took her to ...
  • Common sense:

    • Substituting the head or tail entities in a commonsense triple of ConcepNet:

      Martha puts her dinner into theoven. She lays down fora quick nap. She oversleeps and runs into the kitchen (→ garden) to take out her burnt dinne.
  • Consistency:

    • Inserting or Deleting negated words or prefixes:

      She had (→ did not have) money to get vaccinated. She had a flu shot ...
      She agreed (→ disagreed) to get vaccinated.
    • Substituting words with antonyms:

      She is happy (→ upset) that she had a great time ...
  • Coherence:

    • Substituting words, phrases or sentences:

      Christmas was very soon. Kelly wanted to put up the Christmas tree. (→ Eventually it went into remission.)
  • Causal Relationship:

    • Reordering the cause and effect:

      the sky was clear so he could see clearly the boat. → he could see clearly the boat so the sky was clear.
    • Substituting the causality-related words randomly:

      the sky was clear so (→ because) he could see clearly the boat.
  • Temporal Relationship:

    • Reordering two sequential events:

      I eat one bite. Then I was no longer hungry.I was no longer hungry. Then I eat one bite.
    • Substituting the time-related words:

      After (→ Before) eating one bite I was no longer hungry.
  • Synonym:

    • Substituting a word with its synonym:

      I just purchased (→ bought) my uniforms.
  • Paraphrase:

    • Substituting a sentence with its paraphrase by back translation:

      Her dog doesn't shiver anymore.Her dog stops shaking.
  • Punctuation:

    • Inserting or Deleting inessential punctuation mark:

      Eventually,Eventually he became very hungry.
  • Contraction:

    • Contracting or Expanding contraction:

      I’ll (→ I will) have to keep waiting .
  • Typo:

    • Swapping two adjacent characters:

      that orange (→ ornage) broke her nose.
    • Repeating or Deleting a character:

      that orange (→ orannge) broke her nose.

2. Usage

It is handy to construct a perturbation object and use it to perturb given examples:

from eva.perturb.perturb import *
custom_name = "story"
method = add_typos(custom_name)

# data is a list of dictionary [{"id":0, "ipt": ..., "truth":...}, ...]
print(method.construct(data))
# the perturbed examples can be found under the directory "custom_name"

We present a python file test_perturb.py as an instruction to access the API.

You can download dependent files for some perturbation techniques by executing the following command:

cd ./eva/perturb
bash ./download.sh

You can also download them by THUCloud or Google Drive.

These perturbation techniques are not exhaustive, it is a starting point for further evaluation research. We welcome any pull request for other perturbation techniques (requiring implementation of only two methods including __init__, construct).

Note 📑 We adopt uda for back translation. We provide an example eva/perturb/back_trans_data/story_bt.json to indicate the format of the back translation result. And you can download the results for ROCStories and WritingPrompts by THUCloud or Google Drive.

Benchmark

I. Datasets

1. Machine-Generated Stories (MAGS) with manual annotation

We provide annotated stories from ROCStories (ROC) and WritingPrompts (WP). Some statistics are as follows:

Boxplot of annotation scores for each story source (Left: ROC, Right: WP):

2. Auto-Constructed Stories (ACTS)

We create large-scale test examples based on ROC and WP by aforementioned perturbation techniques. ACTS includes examples for different test types, i.e., discrimination test and invariance test.

  • The discrimination test requires metrics to distinguish human-written positive examples from negative ones. Wecreate each negative example by applying pertur-bation within an individual aspect. Besides, we also select different positive examples targeted for corresponding aspects. Below table shows the numbers of positive and negative examples in different aspects.

  • The invariance test expect the metric judgments to remain the same when we apply rationality-preserving perturbations, which means almost no influence on the quality of examples. The original examples can be either the human-written stories or the negative examples created in the discrimination test. Below table shows the numbers of original (also perturbed) positive and negative examples in different aspects.

3. Download & Data Instruction

You can download the whole dataset by THUCloud or Google Drive.

├── data
   └── `mags_data`
       ├── `mags_roc.json`	# sampled stories and corresponding human annotation.   
       ├── `mags_wp.json`		# sampled stories and corresponding human annotation.       
   └── `acts_data`
       ├── `roc`
              └── `roc_train_ipt.txt`	# input for training set
              └── `roc_train_opt.txt`	# output for training set
              └── `roc_valid_ipt.txt`	# input for validation set
              └── `roc_valid_opt.txt`	# output for validation set
              └── `roc_test_ipt.txt`	# input for test set
              └── `roc_test_opt.txt`	# output for test set
              └── `discrimination_test`                        
                 ├── `roc_lexical_rept.txt`
                 ├── `roc_lexical_rept_perturb.txt`										
                 ├── `roc_semantic_rept.txt`
                 ├── `roc_semantic_rept_perturb.txt`
                 ├── `roc_character.txt`
                 ├── `roc_character_perturb.txt`
                 ├── `roc_commonsense.txt`
                 ├── `roc_commonsense_perturb.txt`												
                 ├── `roc_coherence.txt`
                 ├── `roc_coherence_perturb.txt`
                 ├── `roc_consistency.txt`
                 ├── `roc_consistency_perturb.txt`								
                 ├── `roc_cause.txt`
                 ├── `roc_cause_perturb.txt`       										
                 ├── `roc_time.txt`
                 ├── `roc_time_perturb.txt`                    
              └── `invariance_test`
                 ├── `roc_synonym_substitute_perturb.txt`
                 ├── `roc_semantic_substitute_perturb.txt`
                 ├── `roc_contraction_perturb.txt`
                 ├── `roc_delete_punct_perturb.txt`
                 ├── `roc_typos_perturb.txt`
                 ├── `roc_negative_sample.txt`	# sampled negative samples from the discrimination test.	
                 ├── `roc_negative_sample_synonym_substitute_perturb.txt`
                 ├── `roc_negative_sample_semantic_substitute_perturb.txt`
                 ├── `roc_negative_sample_contraction_perturb.txt`
                 ├── `roc_negative_sample_delete_punct_perturb.txt`
                 ├── `roc_negative_sample_typos_perturb.txt`
       ├── `wp`
              └── ...

II. Tasks

OpenMEVA includes a suite of tasks to test comprehensive capabilities of metrics:

1. Correlation with human scores (based on MAGS)

2. Generalization across generation models and dataset (for learnable metrics, based on MAGS)

3. Judgment in general linguistic features (based on the discrimination test set of ACTS)

4. Robustness to rationality-preserving perturbations (based on the invariance test set of ACTS)

Note: The smaller absolute value of correlation is the better.

5. Fast Test

You can test these capabilities of new metrics by following command:

cd ./benchmark

# test correlation with human scores and generalization
python ./corr_gen.py

# test judgment
python ./judge.py

# test robustness
python ./robust.py

We take BLEU and Forward Perplexity as examples in the python files. You can test your own metrics by minor modification.

How to Cite

@misc{guan2021openmeva,
      title={OpenMEVA: A Benchmark for Evaluating Open-ended Story Generation Metrics}, 
      author={Jian Guan and Zhexin Zhang and Zhuoer Feng and Zitao Liu and Wenbiao Ding and Xiaoxi Mao and Changjie Fan and Minlie Huang},
      year={2021},
      eprint={2105.08920},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

It's our honor to help you better explore language generation evaluation with our toolkit and benchmark.

Owner
Conversational AI groups from Tsinghua University
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022