AirCode: A Robust Object Encoding Method

Overview

AirCode

This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method"

Demo

Object matching comparison when the objects are non-rigid and the view is changed, left is the result of our method while right is the result of NetVLAD

Relocalization on KITTI datasets

Dependencies

  • Python
  • PyTorch
  • OpenCV
  • Matplotlib
  • NumPy
  • Yaml

Data

Four datasets are used in our experiments.

KITTI Odometry

For relocalization experiment. Three sequences are selected, and they are "00", "05" and "06".

KITTI Tracking

For multi-object matching experiment. Four sequences are selected, and they are "0002", "0003", "0006", "0010".

VOT Datasets

For single-object matching experiment. We select three sequences from VOT2019 datasets and they are "bluecar", "bus6" and "humans_corridor_occ_2_A", because the tracked objects in these sequences are included in coco datasets, which are the data we used to train mask-rcnn.

OTB Datasets

For single-object matching experiment. We select five sequences and they are "BlurBody", "BlurCar2", "Human2", "Human7" and "Liquor".

Examples

Relocalization on KITTI Datasets

  1. Extract object descrptors

    python experiments/place_recogination/online_relocalization.py -c config/experiment_tracking.yaml -g 1 -s PATH_TO_SAVE_MIDDLE_RESULTS -d PATH_TO_DATASET -m PATH_TO_MODELS
    
  2. Compute precision-recall curves

    python experiments/place_recogination/offline_process.py -c config/experiment_tracking.yaml -g 1 -d PATH_TO_DATASET -n PATH_TO_MIDDLE_RESULTS -s PATH_TO_SAVE_RESULTS
    
  3. Compute top-K relocalization results

    python experiments/place_recogination/offline_topK.py -c config/experiment_tracking.yaml -g 1 -d PATH_TO_DATASET -n PATH_TO_MIDDLE_RESULTS -s PATH_TO_SAVE_RESULTS
    

Object Matching on OTB, VOT or KITTI Tracking Datasets

  • Run multi-object matching experiment in KITTI Tracking Datasets Modify the config file and run

    python experiments/object_tracking/object_tracking.py -c config/experiment_tracking.yaml -g 1 -s PATH_TO_SAVE_RESULTS -d PATH_TO_DATASET -m PATH_TO_MODELS 
    
  • Run single-object matching experiment in OTB or VOT Datasets Modify the config file and run

    python experiments/object_tracking/single_object_tracking.py -c config/experiment_tracking.yaml -g 1 -s PATH_TO_SAVE_RESULTS -d PATH_TO_DATASET -m PATH_TO_MODELS 
    
You might also like...
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

 Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Code release for our paper,
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

Code and models for ICCV2021 paper
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Comments
  • how can I get *.pth files?

    how can I get *.pth files?

    Hello, I am a beginner. When I run python experiments/place_recogination/online_relocalization.py -c config/experiment_tracking.yaml -g 1 -s results/ -d /media/jixingwu/datasetj/KITTI/Odom/data_odometry_color/sequences -m models/, points_model.pth file is needed. So how can I get it? Thank you!

    opened by jixingwu 5
  • Unable to load model under CPU-only configuration

    Unable to load model under CPU-only configuration

    Hi, I want to run object tracking on KITTI tracking datasets with only CPU using the following terminal prompt:

      python experiments/object_tracking/object_tracking.py -c config/experiment_tracking.yaml -g 1 -s ./results -d /data/datasets/SLAM_dataset/training/ -m ./weights
    

    with configuration in object_tracking.py updated with

    configs['use_gpu'] = 0
    

    However, when running with the configuration above with gcn_model.pth, maskrcnn_model.pth, points_model.pth model files in release v2.0.0, the following error occurs:

    (aircode) [email protected]:~/workspace/AirCode$ python experiments/object_tracking/object_tracking.py -c config/experiment_tracking.yaml -g 1 -s ./results -d /data/datasets/SLAM_dataset/training/ -m ./weights
    experiments/object_tracking/object_tracking.py:371: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
      configs = yaml.load(configs)
    Traceback (most recent call last):
      File "experiments/object_tracking/object_tracking.py", line 384, in <module>
        main()
      File "experiments/object_tracking/object_tracking.py", line 381, in main
        show_object_tracking(configs)
      File "experiments/object_tracking/object_tracking.py", line 272, in show_object_tracking
        superpoint_model = build_superpoint_model(configs, requires_grad=False)
      File "./model/build_model.py", line 101, in build_superpoint_model
        model.load_state_dict(model_dict)
      File "/home/yutianc/minicondas/envs/aircode/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1052, in load_state_dict
        self.__class__.__name__, "\n\t".join(error_msgs)))
    RuntimeError: Error(s) in loading state_dict for VggLike:
            Unexpected key(s) in state_dict: "module.pretrained_net.features.0.weight", "module.pretrained_net.features.0.bias", "module.pretrained_net.features.2.weight", "module.pretrained_net.features.2.bias", "module.pretrained_net.features.5.weight", "module.pretrained_net.features.5.bias", "module.pretrained_net.features.7.weight", "module.pretrained_net.features.7.bias", "module.pretrained_net.features.10.weight", "module.pretrained_net.features.10.bias", "module.pretrained_net.features.12.weight", "module.pretrained_net.features.12.bias", "module.pretrained_net.features.14.weight", "module.pretrained_net.features.14.bias", "module.pretrained_net.features.17.weight", "module.pretrained_net.features.17.bias", "module.pretrained_net.features.19.weight", "module.pretrained_net.features.19.bias", "module.pretrained_net.features.21.weight", "module.pretrained_net.features.21.bias", "module.pretrained_net.features.24.weight", "module.pretrained_net.features.24.bias", "module.pretrained_net.features.26.weight", "module.pretrained_net.features.26.bias", "module.pretrained_net.features.28.weight", "module.pretrained_net.features.28.bias", "module.convPa.weight", "module.convPa.bias", "module.bnPa.weight", "module.bnPa.bias", "module.bnPa.running_mean", "module.bnPa.running_var", "module.bnPa.num_batches_tracked", "module.convPb.weight", "module.convPb.bias", "module.bnPb.weight", "module.bnPb.bias", "module.bnPb.running_mean", "module.bnPb.running_var", "module.bnPb.num_batches_tracked", "module.convDa.weight", "module.convDa.bias", "module.bnDa.weight", "module.bnDa.bias", "module.bnDa.running_mean", "module.bnDa.running_var", "module.bnDa.num_batches_tracked", "module.convDb.weight", "module.convDb.bias", "module.bnDb.weight", "module.bnDb.bias", "module.bnDb.running_mean", "module.bnDb.running_var", "module.bnDb.num_batches_tracked".
    

    Running object_tracking.py with CUDA seems to load models successfully. Is there something wrong with the model loading when GPU is disabled?

    opened by MarkChenYutian 4
  • Why RGB image is converted into grayscale image with 3 channels?

    Why RGB image is converted into grayscale image with 3 channels?

    Hi, I'm trying to use AirCode to do object matching on complete KITTI sequences and I'm reading the code in experiments/show_object_matching.py.

    While reading the code, I noticed that the current code is reading RGB image sequence, convert it into grayscale image, and then duplicate the image into 3-channel each with same value (as following):

    https://github.com/wang-chen/AirCode/blob/5e23e9f5322d2e4ee119d5326a6b6112cef0e6bd/experiments/show_object_matching/show_object_matching.py#L172-L176

    I'm a bit unsure about the reason why this operation is performed here as the original RGB image should contain more information about the object comparing to grayscale image. For instance, it should be easier to distinguish objects with different color but similar shape if the RGB value is preserved.

    opened by MarkChenYutian 2
Owner
Chen Wang
I am engaged in delivering simple and efficient source code.
Chen Wang
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
Flexible Option Learning - NeurIPS 2021

Flexible Option Learning This repository contains code for the paper Flexible Option Learning presented as a Spotlight at NeurIPS 2021. The implementa

Martin Klissarov 7 Nov 09, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023