Code for "Learning to Segment Rigid Motions from Two Frames".

Overview

rigidmask

Code for "Learning to Segment Rigid Motions from Two Frames".

** This is a partial release with inference and evaluation code. The project is still being tested and documented. There might be implemention changes in the future release. Thanks for your interest.

Visuals on Sintel/KITTI/Coral (not temporally smoothed):

If you find this work useful, please consider citing:

@article{yang2021rigidmask,
  title={Learning to Segment Rigid Motions from Two Frames},
  author={Yang, Gengshan and Ramanan, Deva},
  journal={arXiv preprint arXiv:2101.03694},
  year={2021}
}

Data and precomputed results

Download

Additional inputs (coral reef images) and precomputed results are hosted on google drive. Run (assuming you have installed gdown)

gdown https://drive.google.com/uc?id=1Up2cPCjzd_HGafw1AB2ijGmiKqaX5KTi -O ./input.tar.gz
gdown https://drive.google.com/uc?id=12C7rl5xS66NpmvtTfikr_2HWL5SakLVY -O ./rigidmask-sf-precomputed.zip
tar -xzvf ./input.tar.gz 
unzip ./rigidmask-sf-precomputed.zip -d precomputed/

To compute the results in Tab.1, Tab.2 on KITTI,

modelname=rigidmask-sf
python eval/eval_seg.py  --path precomputed/$modelname/  --dataset 2015
python eval/eval_sf.py   --path precomputed/$modelname/  --dataset 2015

Install

The code is tested with python 3.8, pytorch 1.7.0, and CUDA 10.2. Install dependencies by

conda env create -f rigidmask.yml
conda activate rigidmask_v0
pip install kornia
python -m pip install detectron2 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.7/index.html

Compile DCNv2 and ngransac.

cd models/networks/DCNv2/; python setup.py install; cd -
cd models/ngransac/; python setup.py install; cd -

Pretrained models

Download pre-trained models to ./weights (assuming gdown is installed),

mkdir weights
mkdir weights/rigidmask-sf
mkdir weights/rigidmask-kitti
gdown https://drive.google.com/uc?id=1H2khr5nI4BrcrYMBZVxXjRBQYBcgSOkh -O ./weights/rigidmask-sf/weights.pth
gdown https://drive.google.com/uc?id=1sbu6zVeiiK1Ra1vp_ioyy1GCv_Om_WqY -O ./weights/rigidmask-kitti/weights.pth
modelname training set flow model flow err. (K:Fl-err/EPE) motion-in-depth err. (K:1e4) seg. acc. (K:obj/K:bg/S:bg)
rigidmask-sf (mono) SF C+SF+V 10.9%/3.128px 120.4 90.71%/97.05%/86.72%
rigidmask-kitti (stereo) SF+KITTI C+SF+V->KITTI 4.1%/1.155px 49.7 95.58%/98.91%/-

** C: FlythingChairs, SF(SceneFlow including FlyingThings, Monkaa, and Driving, K: KITTI scene flow training set, V: VIPER, S: Sintel.

Inference

Run and visualize rigid segmentation of coral reef video, (pass --refine to turn on rigid motion refinement). Results will be saved at ./weights/$modelname/seq/ and a output-seg.gif file will be generated in the current folder.

modelname=rigidmask-sf
CUDA_VISIBLE_DEVICES=1 python submission.py --dataset seq-coral --datapath input/imgs/coral/   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/weights.pth --testres 1
python eval/generate_visual.py --datapath weights/$modelname/seq-coral/ --imgpath input/imgs/coral

Run and visualize two-view depth estimation on kitti video, a output-depth.gif will be saved to the current folder.

modelname=rigidmask-sf
CUDA_VISIBLE_DEVICES=1 python submission.py --dataset seq-kitti --datapath input/imgs/kitti_2011_09_30_drive_0028_sync_11xx/   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/weights.pth --testres 1.2 --refine
python eval/generate_visual.py --datapath weights/$modelname/seq-kitti/ --imgpath input/imgs/kitti_2011_09_30_drive_0028_sync_11xx
python eval/render_scene.py --inpath weights/rigidmask-sf/seq-kitti/pc0-0000001110.ply

Run and evaluate kitti-sceneflow (monocular setup, Tab. 1 and Tab. 2),

modelname=rigidmask-sf
CUDA_VISIBLE_DEVICES=1 python submission.py --dataset 2015 --datapath path-to-kitti-sceneflow-training   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/weights.pth  --testres 1.2 --refine
python eval/eval_seg.py   --path weights/$modelname/  --dataset 2015
python eval/eval_sf.py   --path weights/$modelname/  --dataset 2015
modelname=rigidmask-sf
CUDA_VISIBLE_DEVICES=1 python submission.py --dataset sintel_mrflow_val --datapath path-to-sintel-training   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/weights.pth  --testres 1.5 --refine
python eval/eval_seg.py   --path weights/$modelname/  --dataset sintel
python eval/eval_sf.py   --path weights/$modelname/  --dataset sintel

Run and evaluate kitti-sceneflow (stereo setup, Tab. 6),

modelname=rigidmask-kitti
CUDA_VISIBLE_DEVICES=1 python submission.py --dataset 2015 --datapath path-to-kitti-sceneflow-images   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/weights.pth  --disp_path input/disp/kittisf-train-hsm-disp/ --fac 2 --maxdisp 512 --refine --sensor stereo
python eval/eval_seg.py   --path weights/$modelname/  --dataset 2015
python eval/eval_sf.py    --path weights/$modelname/  --dataset 2015

To generate results for kitti-sceneflow benchmark (stereo setup, Tab. 3),

modelname=rigidmask-kitti
mkdir ./benchmark_output
CUDA_VISIBLE_DEVICES=1 python submission.py --dataset 2015test --datapath path-to-kitti-sceneflow-images  --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/weights.pth  --disp_path input/disp/kittisf-test-ganet-disp/ --fac 2 --maxdisp 512 --refine --sensor stereo

Training (todo)

Acknowledge (incomplete)

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022