This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

Overview

PyTorch Infer Utils

This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

To install

git clone https://github.com/gorodnitskiy/pytorch_infer_utils.git
pip install /path/to/pytorch_infer_utils/

Export PyTorch model to ONNX

  • Check model for denormal weights to achieve better performance. Use load_weights_rounded_model func to load model with weights rounding:
    from pytorch_infer_utils import load_weights_rounded_model
    
    model = ModelClass()
    load_weights_rounded_model(
        model,
        "/path/to/model_state_dict",
        map_location=map_location
    )
    
  • Use ONNXExporter.torch2onnx method to export pytorch model to ONNX:
    from pytorch_infer_utils import ONNXExporter
    
    model = ModelClass()
    model.load_state_dict(
        torch.load("/path/to/model_state_dict", map_location=map_location)
    )
    model.eval()
    
    exporter = ONNXExporter()
    input_shapes = [-1, 3, 224, 224] # -1 means that is dynamic shape
    exporter.torch2onnx(model, "/path/to/model.onnx", input_shapes)
    
  • Use ONNXExporter.optimize_onnx method to optimize ONNX via onnxoptimizer:
    from pytorch_infer_utils import ONNXExporter
    
    exporter = ONNXExporter()
    exporter.optimize_onnx("/path/to/model.onnx", "/path/to/optimized_model.onnx")
    
  • Use ONNXExporter.optimize_onnx_sim method to optimize ONNX via onnx-simplifier. Be careful with onnx-simplifier not to lose dynamic shapes.
    from pytorch_infer_utils import ONNXExporter
    
    exporter = ONNXExporter()
    exporter.optimize_onnx_sim("/path/to/model.onnx", "/path/to/optimized_model.onnx")
    
  • Also, a method combined the above methods is available ONNXExporter.torch2optimized_onnx:
    from pytorch_infer_utils import ONNXExporter
    
    model = ModelClass()
    model.load_state_dict(
        torch.load("/path/to/model_state_dict", map_location=map_location)
    )
    model.eval()
    
    exporter = ONNXExporter()
    input_shapes = [-1, 3, -1, -1] # -1 means that is dynamic shape
    exporter.torch2optimized_onnx(model, "/path/to/model.onnx", input_shapes)
    
  • Other params that can be used in class initialization:
    • default_shapes: default shapes if dimension is dynamic, default = [1, 3, 224, 224]
    • onnx_export_params:
      • export_params: store the trained parameter weights inside the model file, default = True
      • do_constant_folding: whether to execute constant folding for optimization, default = True
      • input_names: the model's input names, default = ["input"]
      • output_names: the model's output names, default = ["output"]
      • opset_version: the ONNX version to export the model to, default = 11
    • onnx_optimize_params:
      • fixed_point: use fixed point, default = False
      • passes: optimization passes, default = [ "eliminate_deadend", "eliminate_duplicate_initializer", "eliminate_identity", "eliminate_if_with_const_cond", "eliminate_nop_cast", "eliminate_nop_dropout", "eliminate_nop_flatten", "eliminate_nop_monotone_argmax", "eliminate_nop_pad", "eliminate_nop_transpose", "eliminate_unused_initializer", "extract_constant_to_initializer", "fuse_add_bias_into_conv", "fuse_bn_into_conv", "fuse_consecutive_concats", "fuse_consecutive_log_softmax", "fuse_consecutive_reduce_unsqueeze", "fuse_consecutive_squeezes", "fuse_consecutive_transposes", "fuse_matmul_add_bias_into_gemm", "fuse_pad_into_conv", "fuse_transpose_into_gemm", "lift_lexical_references", "nop" ]

Export ONNX to TensorRT

  • Check TensorRT health via check_tensorrt_health func
  • Use TRTEngineBuilder.build_engine method to export ONNX to TensorRT:
    from pytorch_infer_utils import TRTEngineBuilder
    
    exporter = TRTEngineBuilder()
    # get engine by itself
    engine = exporter.build_engine("/path/to/model.onnx")
    # or save engine to /path/to/model.trt
    exporter.build_engine("/path/to/model.onnx", engine_path="/path/to/model.trt")
    
  • fp16_mode is available:
    from pytorch_infer_utils import TRTEngineBuilder
    
    exporter = TRTEngineBuilder()
    engine = exporter.build_engine("/path/to/model.onnx", fp16_mode=True)
    
  • int8_mode is available. It requires calibration_set of images as List[Any], load_image_func - func to correctly read and process images, max_image_shape - max image size as [C, H, W] to allocate correct size of memory:
    from pytorch_infer_utils import TRTEngineBuilder
    
    exporter = TRTEngineBuilder()
    engine = exporter.build_engine(
        "/path/to/model.onnx",
        int8_mode=True,
        calibration_set=calibration_set,
        max_image_shape=max_image_shape,
        load_image_func=load_image_func,
    )
    
  • Also, additional params for builder config builder.create_builder_config can be put to kwargs.
  • Other params that can be used in class initialization:
    • opt_shape_dict: optimal shapes, default = {'input': [[1, 3, 224, 224], [1, 3, 224, 224], [1, 3, 224, 224]]}
    • max_workspace_size: max workspace size, default = [1, 30]
    • stream_batch_size: batch size for forward network during transferring to int8, default = 100
    • cache_file: int8_mode cache filename, default = "model.trt.int8calibration"

Inference via onnxruntime on CPU and onnx_tensort on GPU

  • Base class ONNXWrapper __init__ has the structure as below:
    def __init__(
        self,
        onnx_path: str,
        gpu_device_id: Optional[int] = None,
        intra_op_num_threads: Optional[int] = 0,
        inter_op_num_threads: Optional[int] = 0,
    ) -> None:
        """
        :param onnx_path: onnx-file path, required
        :param gpu_device_id: gpu device id to use, default = 0
        :param intra_op_num_threads: ort_session_options.intra_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :param inter_op_num_threads: ort_session_options.inter_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :type onnx_path: str
        :type gpu_device_id: int
        :type intra_op_num_threads: int
        :type inter_op_num_threads: int
        """
        if gpu_device_id is None:
            import onnxruntime
    
            self.is_using_tensorrt = False
            ort_session_options = onnxruntime.SessionOptions()
            ort_session_options.intra_op_num_threads = intra_op_num_threads
            ort_session_options.inter_op_num_threads = inter_op_num_threads
            self.ort_session = onnxruntime.InferenceSession(
                onnx_path, ort_session_options
            )
    
        else:
            import onnx
            import onnx_tensorrt.backend as backend
    
            self.is_using_tensorrt = True
            model_proto = onnx.load(onnx_path)
            for gr_input in model_proto.graph.input:
                gr_input.type.tensor_type.shape.dim[0].dim_value = 1
    
            self.engine = backend.prepare(
                model_proto, device=f"CUDA:{gpu_device_id}"
            )
    
  • ONNXWrapper.run method assumes the use of such a structure:
    img = self._process_img_(img)
    if self.is_using_tensorrt:
        preds = self.engine.run(img)
    else:
        ort_inputs = {self.ort_session.get_inputs()[0].name: img}
        preds = self.ort_session.run(None, ort_inputs)
    
    preds = self._process_preds_(preds)
    

Inference via onnxruntime on CPU and TensorRT on GPU

  • Base class TRTWrapper __init__ has the structure as below:
    def __init__(
        self,
        onnx_path: Optional[str] = None,
        trt_path: Optional[str] = None,
        gpu_device_id: Optional[int] = None,
        intra_op_num_threads: Optional[int] = 0,
        inter_op_num_threads: Optional[int] = 0,
        fp16_mode: bool = False,
    ) -> None:
        """
        :param onnx_path: onnx-file path, default = None
        :param trt_path: onnx-file path, default = None
        :param gpu_device_id: gpu device id to use, default = 0
        :param intra_op_num_threads: ort_session_options.intra_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :param inter_op_num_threads: ort_session_options.inter_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :param fp16_mode: use fp16_mode if class initializes only with
            onnx_path on GPU, default = False
        :type onnx_path: str
        :type trt_path: str
        :type gpu_device_id: int
        :type intra_op_num_threads: int
        :type inter_op_num_threads: int
        :type fp16_mode: bool
        """
        if gpu_device_id is None:
            import onnxruntime
    
            self.is_using_tensorrt = False
            ort_session_options = onnxruntime.SessionOptions()
            ort_session_options.intra_op_num_threads = intra_op_num_threads
            ort_session_options.inter_op_num_threads = inter_op_num_threads
            self.ort_session = onnxruntime.InferenceSession(
                onnx_path, ort_session_options
            )
    
        else:
            self.is_using_tensorrt = True
            if trt_path is None:
                builder = TRTEngineBuilder()
                trt_path = builder.build_engine(onnx_path, fp16_mode=fp16_mode)
    
            self.trt_session = TRTRunWrapper(trt_path)
    
  • TRTWrapper.run method assumes the use of such a structure:
    img = self._process_img_(img)
    if self.is_using_tensorrt:
        preds = self.trt_session.run(img)
    else:
        ort_inputs = {self.ort_session.get_inputs()[0].name: img}
        preds = self.ort_session.run(None, ort_inputs)
    
    preds = self._process_preds_(preds)
    

Environment

TensorRT

  • TensorRT installing guide is here
  • Required CUDA-Runtime, CUDA-ToolKit
  • Also, required additional python packages not included to setup.cfg (it depends upon CUDA environment version):
    • pycuda
    • nvidia-tensorrt
    • nvidia-pyindex

onnx_tensorrt

  • onnx_tensorrt requires cuda-runtime and tensorrt.
  • To install:
    git clone --depth 1 --branch 21.02 https://github.com/onnx/onnx-tensorrt.git
    cd onnx-tensorrt
    cp -r onnx_tensorrt /usr/local/lib/python3.8/dist-packages
    cd ..
    rm -rf onnx-tensorrt
    
Owner
Alex Gorodnitskiy
Computer Vision Engineer 🤖
Alex Gorodnitskiy
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022