UFPR-ADMR-v2 Dataset

Overview

UFPR-ADMR-v2 Dataset

The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), which serves more than 4M consuming units in the Brazilian state of Paraná. The images were acquired with many different cameras and are available in the JPG format with 320×640 or 640×320 pixels (depending on the camera orientation). More details are available in our paper (currently under review).

Here are some examples from the dataset:

The dataset is split into three subsets: training (3,000 images), validation (1,000 images) and testing (1,000 images). Every image has the following annotations available in a .txt file: the counter’s corners (x1, y1), (x2, y2), (x3, y3), (x4, y4). The corners can be used to rectify the counter patch and represent, respectively, the top-left, top-right, bottom-right, and bottom-left corners. For each dial, the current position (x, y, w, h) and the corresponding reading (the final reading as well as the approximate reading with one decimal place precision). All counters of the dataset (regardless of meter type) have 4 or 5 dials; thus, 22,410 dials were manually annotated.

The full details and statistics regarding the dataset are available in our paper.

How to obtain the dataset

The UFPR-ADMR-v2 dataset is the property of the Energy Company of Paraná (Copel) and is released only to academic researchers from educational or research institutes for non-commercial purposes.

To be able to download the dataset, please read carefully this license agreement, fill it out and send it back to Professor David Menotti ([email protected]). The license agreement MUST be reviewed and signed by the individual or entity authorized to make legal commitments on behalf of the institution or corporation (e.g., Department/Administrative Head, or similar). We cannot accept licenses signed by students or faculty members.

Citation

If you use the UFPR-ADMR-v2 dataset in your research, please cite our paper:

  • G. Salomon, R. Laroca, D. Menotti, “Image-based Automatic Dial Meter Reading in Unconstrained Scenarios,” arXiv preprint, arXiv:2201.02850, pp. 1-10, 2022. [arXiv]
@article{salomon2022image,
  title = {Image-based Automatic Dial Meter Reading in Unconstrained Scenarios},
  author={G. {Salomon} and R. {Laroca} and D. {Menotti}}, 
  year = {2022},
  journal = {arXiv preprint},
  volume = {arXiv:2201.02850},
  number = {},
  pages = {1-10}
}

You may also be interested in the conference version of this paper, where we introduced the UFPR-ADMR-v1 dataset:

  • G. Salomon, R. Laroca, D. Menotti, “Deep Learning for Image-based Automatic Dial Meter Reading: Dataset and Baselines” in International Joint Conference on Neural Networks (IJCNN), July 2020, pp. 1–8. [IEEE Xplore] [arXiv]

Related publications

A list of all papers on AMR published by us can be seen here.

Contact

Please contact Professor David Menotti ([email protected]) with questions or comments.

Owner
Gabriel Salomon
just me
Gabriel Salomon
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Edge Tracing using Gaussian Process Regression Repository storing python module which implements a framework to trace individual edges in an image usi

Jamie Burke 7 Dec 27, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022