This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

Related tags

Deep LearningHCSC
Overview

HCSC: Hierarchical Contrastive Selective Coding

This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding), whose details are in this paper.

HCSC is an effective and efficient method to pre-train image encoders in a self-supervised fashion. In general, this method seeks to learn image representations with hierarchical semantic structures. It utilizes hierarchical K-means to derive hierarchical prototypes, and these prototypes represent the hierarchical semantics underlying the data. On such basis, we perform Instance-wise and Prototypical Contrastive Selective Coding to inject the information within hierarchical prototypes into image representations. HCSC has achieved SOTA performance on the self-supervised pre-training of CNNs (e.g., ResNet-50), and we will further study its potential on pre-training Vision Transformers.

Roadmap

  • [2022/02/01] The initial release! We release all source code for pre-training and downstream evaluation. We release three pre-trained ResNet-50 models: 200 epochs (single-crop), 200 epochs (multi-crop) and 400 epochs (single-crop, batch size: 256).

TODO

  • Finish the pre-training of 400 epochs ResNet-50 models (multi-crop) and release.
  • Finish the pre-training of 800 epochs ResNet-50 models (single- & multi-crop) and release.
  • Support Vision Transformer backbones.
  • Pre-train Vision Transformers with HCSC and release model weights under various configurations.

Model Zoo

We will continually release our pre-trained HCSC model weights and corresponding training configs. The current finished ones are as follows:

Backbone Method Crop Epoch Batch size Lincls top-1 Acc. KNN top-1 Acc. url config
ResNet-50 HCSC Single 200 256 69.2 60.7 model config
ResNet-50 HCSC Multi 200 256 73.3 66.6 model config
ResNet-50 HCSC Single 400 256 70.6 63.4 model config

Installation

Use following command to install dependencies (python3.7 with pip installed):

pip3 install -r requirement.txt

If having trouble installing PyTorch, follow the original guidance (https://pytorch.org/). Notably, the code is tested with cudatoolkit version 10.2.

Pre-training on ImageNet

Download ImageNet dataset under [ImageNet Folder]. Go to the path "[ImageNet Folder]/val" and use this script to build sub-folders.

To train single-crop HCSC on 8 Tesla-V100-32GB GPUs for 200 epochs, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=8 \
pretrain.py [your ImageNet Folder]

To train multi-crop HCSC on 8 Tesla-V100-32GB GPUs for 200 epochs, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=8 \
pretrain.py --multicrop [your ImageNet Folder]

Downstream Evaluation

Evaluation: Linear Classification on ImageNet

With a pre-trained model, to train a supervised linear classifier with all available GPUs, run:

python3 eval_lincls_imagenet.py --data [your ImageNet Folder] \
--dist-url tcp://localhost:10001 --world-size 1 --rank 0 \
--pretrained [your pre-trained model (example:out.pth)]

Evaluation: KNN Evaluation on ImageNet

To reproduce the KNN evaluation results with a pre-trained model using a single GPU, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=1 eval_knn.py \
--checkpoint_key state_dict \
--pretrained [your pre-trained model] \
--data [your ImageNet Folder]

Evaluation: Semi-supervised Learning on ImageNet

To fine-tune a pre-trained model with 1% or 10% ImageNet labels with 8 Tesla-V100-32GB GPUs, run:

1% of labels:

python3 -m torch.distributed.launch --nproc_per_node 8 --master_port [your port] eval_semisup.py \
--labels_perc 1 \
--pretrained [your pretrained weights] \
[your ImageNet Folder]

10% of labels:

python3 -m torch.distributed.launch --nproc_per_node 8 --master_port [your port] eval_semisup.py \
--labels_perc 10 \
--pretrained [your pretrained weights] \
[your ImageNet Folder]

Evaluation: Transfer Learning - Classification on VOC / Places205

VOC

1. Download the VOC dataset.
2. Finetune and evaluate on PASCAL VOC (with a single GPU):
cd voc_cls/ 
python3 main.py --data [your voc data folder] \
--pretrained [your pretrained weights]

Places205

1. Download the Places205 dataset (resized 256x256 version)
2. Linear Classification on Places205 (with all available GPUs):
python3 eval_lincls_places.py --data [your places205 data folder] \
--data-url tcp://localhost:10001 \
--pretrained [your pretrained weights]

Evaluation: Transfer Learning - Object Detection on VOC / COCO

1. Download VOC and COCO Dataset (under ./detection/datasets).

2. Install detectron2.

3. Convert a pre-trained model to the format of detectron2:

cd detection
python3 convert-pretrain-to-detectron2.py [your pretrained weight] out.pkl

4. Train on PASCAL VOC/COCO:

Finetune and evaluate on VOC (with 8 Tesla-V100-32GB GPUs):
cd detection
python3 train_net.py --config-file ./configs/pascal_voc_R_50_C4_24k_hcsc.yaml \
--num-gpus 8 MODEL.WEIGHTS out.pkl
Finetune and evaluate on COCO (with 8 Tesla-V100-32GB GPUs):
cd detection
python3 train_net.py --config-file ./configs/coco_R_50_C4_2x_hcsc.yaml \
--num-gpus 8 MODEL.WEIGHTS out.pkl

Evaluation: Clustering Evaluation on ImageNet

To reproduce the clustering evaluation results with a pre-trained model using all available GPUs, run:

python3 eval_clustering.py --dist-url tcp://localhost:10001 \
--multiprocessing-distributed --world-size 1 --rank 0 \
--num-cluster [target num cluster] \
--pretrained [your pretrained model weights] \
[your ImageNet Folder]

In the experiments of our paper, we set --num-cluster as 25000 and 1000.

License

This repository is released under the MIT license as in the LICENSE file.

Citation

If you find this repository useful, please kindly consider citing the following paper:

@article{guo2022hcsc,
  title={HCSC: Hierarchical Contrastive Selective Coding},
  author={Guo, Yuanfan and Xu, Minghao and Li, Jiawen and Ni, Bingbing and Zhu, Xuanyu and Sun, Zhenbang and Xu, Yi},
  journal={arXiv preprint arXiv:2202.00455},
  year={2022}
}
Owner
YUANFAN GUO
From SJTU. Working on self-supervised pre-training.
YUANFAN GUO
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023