Tensor-based approaches for fMRI classification

Overview

tensor-fmri

Using tensor-based approaches to classify fMRI data from StarPLUS.

Citation

If you use any code in this repository, please cite the following work.

Here is where we will add the citation to the paper.

Installation and Requirements

git clone https://github.com/elizabethnewman/tensor-fmri.git
cd tensor-fmri
pip install -r requirements.txt

Additional Requirements: python version 3.7 or newer

Additional Advice: before installing the requirements, create a virtual environment via

virtualenv -p python3 <env_name>

To use the environment, activate via

source env_name/bin/activate
pip install -r requirements.txt

When finished, deactivate while in the virtual environment via

deactivate

StarPlus Data

The StarPlus fMRI dataset is publicly-available and fairly small. This dataset consists of fMRIs of study subjects who are shown either a sentence or an image, and we aim to classify them into these two categories. We represent the data in a fifth order tensor containing pixel data of the 3D brain images over time over each trial.

Download from the website to the data folder before running StarPlus scripts.

Organization

  • data: contains two datasets, the toy synthetic dataset and the MNIST datasets.

  • tensor: contains functions for all the needed tensor products and tensor SVD. This is the core of the repository and is written for general use, not just for fMRI data.

  • tests: contains internal code to test the tensor-tensor products and can be used in the development of new code.

  • utils: contains visualization and preprocessing tools.

Introductary Notebooks in Google Colab

To illustrate the utility of the code and our algorithm, we have create two Google Colab notebooks.

  • Synthetic Data Example: Open In Colab

  • MNIST Example: Open In Colab

Resources

An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022