This is an implementation of PIFuhd based on Pytorch

Overview

Open-PIFuhd

This is a unofficial implementation of PIFuhd

PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization(CVPR2020)

Implementation

  • Training Coarse PIFuhd
  • Training Fine PIFuhd
  • Inference
  • metrics(P2S, Normal, Chamfer)
  • Gan generates front normal and back normal (Under designing)

Note that the pipeline I design do not consider normal map generated by pix2pixHD because it is Not main difficulty we reimplement PIFuhd. By the way, I will release GAN +PIFuhd soon.

Prerequisites

  • PyTorch>=1.6
  • json
  • PIL
  • skimage
  • tqdm
  • cv2
  • trimesh with pyembree
  • pyexr
  • PyOpenGL
  • freeglut (use sudo apt-get install freeglut3-dev for ubuntu users)
  • (optional) egl related packages for rendering with headless machines. (use apt install libgl1-mesa-dri libegl1-mesa libgbm1 for ubuntu users)
  • face3d

Data processed

We use Render People as our datasets but the data size is 296 (270 for training while 29 for testing) which is less than paper said 500.

Note that we are unable to release the full training data due to the restriction of commertial scans.

Initial data

I modified part codes in PIFu (branch: PIFu-modify, and download it into your project) in order to could process dirs where your model save

bash ./scripts/process_obj.sh [--dir_models_path]
#e.g.  bash ./scripts/process_obj.sh ../Garment/render_people_train/

Rendering data

I modified part codes in PIFu in order to could process dirs where your model save

python -m apps.render_data -i [--dir_models_path] -o [--save_processed_models_path] -s 1024 [Optional: -e]
#-e means use GPU rendering
#e.g.python -m apps.render_data -i ../Garment/render_people_train/ -o ../Garment/render_gen_1024_train/ -s 1024 -e

Render Normal Map

Rendering front and back normal map In Current Project

All config params is set in ./configs/PIFuhd_Render_People_HG_coarse.py, bash ./scripts/generate.sh

# the params you could modify from ./configs/PIFuhd_Render_People_HG_normal_map.py
# the import params here is 
#  e.g. input_dir = '../Garment/render_gen_1024_train/' and cache= "../Garment/cache/render_gen_1024/rp_train/"
# inpud_dir means output render_gen_1024_train
# cache means where save intermediate results like sample points from mesh

After processing all datasets, Tree-Structured Directory looks like following:

render_gen_1024_train/
├── rp_aaron_posed_004_BLD
│   ├── GEO
│   ├── MASK
│   ├── PARAM
│   ├── RENDER
│   ├── RENDER_NORMAL
│   ├── UV_MASK
│   ├── UV_NORMAL
│   ├── UV_POS
│   ├── UV_RENDER
│   └── val.txt
├── rp_aaron_posed_005_BLD
	....

Training

Training coarse-pifuhd

All config params is set in ./configs/PIFuhd_Render_People_HG_coarse.py, Where you could modify all you want.

Note that this project I designed is friend, which means you could easily replace origin backbone, head by yours :)

bash ./scripts/train_pfhd_coarse.sh

Training Fine-PIFuhd

the same as coarse PIFuhd, all config params is set in ./configs/PIFuhd_Render_People_HG_fine.py,

bash ./scripts/train_pfhd_fine.sh

**If you meet memory problems about GPUs, pls reduce batch_size in ./config/*.py **

Inference

bash ./scripts/test_pfhd_coarse.sh
#or 
bash ./scripts/test_pfhd_fine.sh

the results will be saved into checkpoints/PIFuhd_Render_People_HG_[coarse/fine]/gallery/test/model_name/*.obj, then you could use meshlab to view the generate models.

Metrics

export MESA_GL_VERSION_OVERRIDE=3.3 
# eval coarse-pifuhd
python ./tools/eval_pifu.py  --config ./configs/PIFuhd_Render_People_HG_coarse.py
# eval fine-pifuhd
python ./tools/eval_pifu.py  --config ./configs/PIFuhd_Render_People_HG_fine.py

Demo

we provide rendering code using free models in RenderPeople. This tutorial uses rp_dennis_posed_004 model. Please download the model from this link and unzip the content. Use following command to reconstruct the model:


Debug

I provide bool params(debug in all of config files) to you to check whether your points sampled from mesh is right. There are examples:

Visualization

As following show, left is input image, mid is the results of coarse-pifuhd, right is fine-pifuhd

Reconstruction on Render People Datasets

Note that our training datasets are less than official one(270 for our while 450 for paper) resulting in the performance changes in some degree

IoU ACC recall P2S Normal Chamfer
PIFu 0.748 0.880 0.856 1.801 0.1446 2.00
Coarse-PIFuhd(+Front and back normal) 0.865(5cm) 0.931(5cm) 0.923(5cm) 1.242 0.1205 1.4015
Fine-PIFuhd(+Front and back normal) 0.813(3cm) 0.896(3cm) 0.904(5cm) - 0.1138 -

There is an issue why p2s of fine-pifuhd is bit large than coarse-pifuhd. This is because I do not add some post-processing to clean some chaos in reconstruction. However, the details of human mesh produced by fine-pifuhd are obviously better than coarse-pifuhd.

About Me

I hope that this project could provide some contributions to our communities, especially for implicit-field.

By the way, If you think the project is helpful to you, pls don’t forget to star this project : )

Related Research

Monocular Real-Time Volumetric Performance Capture (ECCV 2020) Ruilong Li*, Yuliang Xiu*, Shunsuke Saito, Zeng Huang, Kyle Olszewski, Hao Li

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) Shunsuke Saito, Tomas Simon, Jason Saragih, Hanbyul Joo

ARCH: Animatable Reconstruction of Clothed Humans (CVPR 2020) Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

Robust 3D Self-portraits in Seconds (CVPR 2020) Zhe Li, Tao Yu, Chuanyu Pan, Zerong Zheng, Yebin Liu

Learning to Infer Implicit Surfaces without 3d Supervision (NeurIPS 2019) Shichen Liu, Shunsuke Saito, Weikai Chen, Hao Li

Owner
Lingteng Qiu
good good study, day day up
Lingteng Qiu
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022