DFM: A Performance Baseline for Deep Feature Matching

Related tags

Deep LearningDFM
Overview

DFM: A Performance Baseline for Deep Feature Matching

Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baseline for Deep Feature Matching at CVPR 2021 Image Matching Workshop.

Paper (CVF) | Paper (arXiv)
Presentation (live) | Presentation (recording)

Overview

Setup Environment

We strongly recommend using Anaconda. Open a terminal in ./python folder, and simply run the following lines to create the environment:

conda env create -f environment.yml
conda activte dfm

Dependencies
If you do not use conda, DFM needs the following dependencies:
(Versions are not strict; however, we have tried DFM with these specific versions.)

  • python=3.7.1
  • pytorch=1.7.1
  • torchvision=0.8.2
  • cudatoolkit=11.0
  • matplotlib=3.3.4
  • pillow=8.2.0
  • opencv=3.4.2
  • ipykernel=5.3.4
  • pyyaml=5.4.1

Enjoy with DFM!

Now you are ready to test DFM by the following command:

python dfm.py --input_pairs image_pairs.txt

You should make the image_pairs.txt file as following:

1A> 1B>
2A> 2B>
.
.
.
nA> nB>

If you want to run DFM with a specific configuration, you can make changes to the following arguments in config.yml:

  • Use enable_two_stage to enable or disable two stage approach (default: True)
    (Note: Make it enable for planar scenes with significant viewpoint changes, otherwise disable.)
  • Use model to change the pre-trained model (default: VGG19)
    (Note: DFM only supports VGG19 and VGG19_BN right now, we plan to add other backbones.)
  • Use ratio_th to change ratio test thresholds (default: [0.9, 0.9, 0.9, 0.9, 0.95, 1.0])
    (Note: These ratio test thresholds are for 1st to 5th layer, the last threshold (6th) are for Stage-0 and only usable when --enable_two_stage=True)
  • Use bidirectional to enable or disable bidirectional ratio test. (default: True)
    (Note: Make it enable to find more robust matches. Naturally, it should be enabled, make it False is only for similar results with our Matlab implementation since Matlab's matchFeatures function does not execute ratio test in a bidirectional way.)
  • Use display_results to enable or disable displaying results (default: True)
    (Note: If True, DFM saves matched image pairs to output_directory.)
  • Use output_directory to define output directory. (default: 'results')
    (Note: imageA_imageB_matches.npz will be created in output_directory for each image pair.)

Evaluation

Currently, we do not have support evaluation for our Python implementation. You can use our Image Matching Evaluation repository (coming soon), in which we have support to evaluate SuperPoint, SuperGlue, Patch2Pix, and DFM algorithms on HPatches. Also, you can use our Matlab implementation (see For Matlab Users section) to reproduce the results presented in the paper.

Notice

To reproduce our results given in the paper, use our Matlab implementation.
You can get more accurate results (but with fewer features) using Python implementation. It is mainly because MATLAB’s matchFeatures function does not execute ratio test in a bidirectional way, where our Python implementation performs bidirectional ratio test. Nevertheless, we made bidirectionality adjustable in our Python implementation as well.

For Matlab Users

We have implemented and tested DFM on MATLAB R2017b.

Prerequisites

You need to install MatConvNet (we have support for matconvnet-1.0-beta24). Follow the instructions on the official website.

Once you finished the installation of MatConvNet, you should download pretratined VGG-19 network to the ./matlab/models folder.

Running DFM

Now, you are ready to try DFM!

Just open and run main_DFM.m with your own images.

Evaluation on HPatches

Download HPatches sequences and extract it to ./matlab/data folder.

Run main_hpatches.m which is in ./matlab/HPatches Evaluation folder.

A results.txt file will be generetad in ./matlab/results/HPatches folder.

  • In the first column you can find the pair names.
  • In the 2-11 column you can find the Mean Matching Accuracy (MMA) results for 1-10 pixel thresholds.
  • In 12th column you can find number of matched features.
  • Columns 13-17 are for best homography estimation results (denoted as boe in the paper)
  • Columns 18-22 are for worst homography estimation results (denoted as woe in the paper)
  • Columns 22-71 are for 10 different homography estimation tests.

BibTeX Citation

Please cite our paper if you use the code:

@InProceedings{Efe_2021_CVPR,
    author    = {Efe, Ufuk and Ince, Kutalmis Gokalp and Alatan, Aydin},
    title     = {DFM: A Performance Baseline for Deep Feature Matching},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2021},
    pages     = {4284-4293}
}
Owner
MSc student @ METU
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022