DFM: A Performance Baseline for Deep Feature Matching

Related tags

Deep LearningDFM
Overview

DFM: A Performance Baseline for Deep Feature Matching

Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baseline for Deep Feature Matching at CVPR 2021 Image Matching Workshop.

Paper (CVF) | Paper (arXiv)
Presentation (live) | Presentation (recording)

Overview

Setup Environment

We strongly recommend using Anaconda. Open a terminal in ./python folder, and simply run the following lines to create the environment:

conda env create -f environment.yml
conda activte dfm

Dependencies
If you do not use conda, DFM needs the following dependencies:
(Versions are not strict; however, we have tried DFM with these specific versions.)

  • python=3.7.1
  • pytorch=1.7.1
  • torchvision=0.8.2
  • cudatoolkit=11.0
  • matplotlib=3.3.4
  • pillow=8.2.0
  • opencv=3.4.2
  • ipykernel=5.3.4
  • pyyaml=5.4.1

Enjoy with DFM!

Now you are ready to test DFM by the following command:

python dfm.py --input_pairs image_pairs.txt

You should make the image_pairs.txt file as following:

1A> 1B>
2A> 2B>
.
.
.
nA> nB>

If you want to run DFM with a specific configuration, you can make changes to the following arguments in config.yml:

  • Use enable_two_stage to enable or disable two stage approach (default: True)
    (Note: Make it enable for planar scenes with significant viewpoint changes, otherwise disable.)
  • Use model to change the pre-trained model (default: VGG19)
    (Note: DFM only supports VGG19 and VGG19_BN right now, we plan to add other backbones.)
  • Use ratio_th to change ratio test thresholds (default: [0.9, 0.9, 0.9, 0.9, 0.95, 1.0])
    (Note: These ratio test thresholds are for 1st to 5th layer, the last threshold (6th) are for Stage-0 and only usable when --enable_two_stage=True)
  • Use bidirectional to enable or disable bidirectional ratio test. (default: True)
    (Note: Make it enable to find more robust matches. Naturally, it should be enabled, make it False is only for similar results with our Matlab implementation since Matlab's matchFeatures function does not execute ratio test in a bidirectional way.)
  • Use display_results to enable or disable displaying results (default: True)
    (Note: If True, DFM saves matched image pairs to output_directory.)
  • Use output_directory to define output directory. (default: 'results')
    (Note: imageA_imageB_matches.npz will be created in output_directory for each image pair.)

Evaluation

Currently, we do not have support evaluation for our Python implementation. You can use our Image Matching Evaluation repository (coming soon), in which we have support to evaluate SuperPoint, SuperGlue, Patch2Pix, and DFM algorithms on HPatches. Also, you can use our Matlab implementation (see For Matlab Users section) to reproduce the results presented in the paper.

Notice

To reproduce our results given in the paper, use our Matlab implementation.
You can get more accurate results (but with fewer features) using Python implementation. It is mainly because MATLAB’s matchFeatures function does not execute ratio test in a bidirectional way, where our Python implementation performs bidirectional ratio test. Nevertheless, we made bidirectionality adjustable in our Python implementation as well.

For Matlab Users

We have implemented and tested DFM on MATLAB R2017b.

Prerequisites

You need to install MatConvNet (we have support for matconvnet-1.0-beta24). Follow the instructions on the official website.

Once you finished the installation of MatConvNet, you should download pretratined VGG-19 network to the ./matlab/models folder.

Running DFM

Now, you are ready to try DFM!

Just open and run main_DFM.m with your own images.

Evaluation on HPatches

Download HPatches sequences and extract it to ./matlab/data folder.

Run main_hpatches.m which is in ./matlab/HPatches Evaluation folder.

A results.txt file will be generetad in ./matlab/results/HPatches folder.

  • In the first column you can find the pair names.
  • In the 2-11 column you can find the Mean Matching Accuracy (MMA) results for 1-10 pixel thresholds.
  • In 12th column you can find number of matched features.
  • Columns 13-17 are for best homography estimation results (denoted as boe in the paper)
  • Columns 18-22 are for worst homography estimation results (denoted as woe in the paper)
  • Columns 22-71 are for 10 different homography estimation tests.

BibTeX Citation

Please cite our paper if you use the code:

@InProceedings{Efe_2021_CVPR,
    author    = {Efe, Ufuk and Ince, Kutalmis Gokalp and Alatan, Aydin},
    title     = {DFM: A Performance Baseline for Deep Feature Matching},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2021},
    pages     = {4284-4293}
}
Owner
MSc student @ METU
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
Pytorch Lightning 1.2k Jan 06, 2023
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022