Code for pre-training CharacterBERT models (as well as BERT models).

Overview

Pre-training CharacterBERT (and BERT)

This is a repository for pre-training BERT and CharacterBERT.

DISCLAIMER: The code was largely adapted from an older version of NVIDIA's repository for benchmarking the pre-training of BERT using Automatic Mixed Precision. The original code was tweaked to include CharacterBERT and other minor elements.

Python Environment

First of all, we will need to have a Python environment with the required packages installed.

NOTE: This was tested with NVIDIA V100 (16GB/32GB) GPUs and a cuda 10.2 installation.

# Create a Python 3.8 environment via conda 
conda create --name pretraining python=3.8 -y
conda activate pretraining

# For showing progress bars
pip install tqdm

# For extracting raw text from Wikipedia dumps
cd external/
git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor/
git checkout 6490f5361d7658208ad7f8e5deeb56ee0fe9e02f
cd ../..

# For parsing Wikiextractor outputs to get Wikipedia text
pip install beautifulsoup4

# For segmenting documents into sentences
pip install nltk
python -c "import nltk;nltk.download('punkt')"

# For saving pre-training data into .hdf5 files
pip install h5py

# For basic tokenization and BERT/CharacterBERT models in PyTorch
cd external/
git clone https://github.com/helboukkouri/transformers.git
cd transformers/
git checkout 756b8efa698aad0294735376bc147909d1e6b959
pip install -e .
cd ../..

# Actual PyTorch installation
conda install pytorch=1.7.1 cudatoolkit=10.2 -c pytorch -y

# For monitoring training progress
pip install tensorboard

# For using Automatic Mixed Precision (speeds up training) 
# NOTE: this will require some space in /tmp/ during compilation
cd external/
git clone https://github.com/NVIDIA/apex.git
cd apex/
git checkout a78ccf0b3e3f7130b3f157732dc8e8e651389922
pip install \
    -v --disable-pip-version-check --no-cache-dir \
    --global-option="--cpp_ext" --global-option="--cuda_ext" ./
cd ../..

# Configuration and vocabulary files for BERT (base, uncased)
mkdir ./data/bert-base-uncased/
cd ./data/bert-base-uncased/
wget https://huggingface.co/bert-base-uncased/resolve/main/config.json
wget https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt
cd ../..

# Configuration file for CharacterBERT (base, uncased)
mkdir ./data/character-bert/
cd ./data/character-bert/
wget https://huggingface.co/helboukkouri/character-bert/resolve/main/config.json
cd ../..

Now we can move on to the corpus preparation step.

Corpus Preparation

Downloading the corpus

First, we will need to get a corpus of texts. Let's download and use the 2021-01-01 dump of English Wikipedia.

Assuming that:

  • the environment variable $WORKDIR contains a path to this repository

  • we have already activated our conda environment using: conda activate pretraining

We can run this command to download the wikipedia dump

WORKDIR=$WORKDIR \
    python download_wikipedia.py --language='en'

If you don't want to download the whole dump you can experiment with a sample first by adding the --debug flag.

WORKDIR=$WORKDIR \
    python download_wikipedia.py --language='en' --debug

NOTE: if you use --debug then you will need to adapt all the commands by replacing the corpus name wikipedia_en with wikipedia_sample.

Extraction, Tokenization & Formatting

Since Wikipedia dumps come as a large .xml archives, we need to extract the process the file we just downloaded into a single .txt file with raw text. Then, we will need to format it in a specific way (one sentence per line and a blank line between sentences from different Wikipedia articles) to allow for generating examples for the Next Sentence Prediction task (NSP). We also tokenize each sentence to be able to easily generate Masked Language Modeling examples as well in future steps.

The following command runs both the extraction and formatting steps then removes the extracted document-level corpus only keeps the formatted sentence-level we need.

NOTE: you can remove the --delete_document_level_corpus flag to keep the original extracted corpus.

WORKDIR=$WORKDIR \
    python format_wikipedia.py \
        --archive_path=$WORKDIR/data/downloaded/wikipedia_en/wikipedia_en.xml.bz2 \
        --delete_document_level_corpus

After running the command above, you should be able to find a single text file in data/formatted/wikipedia_en/.

NOTE 1: if you want to use a corpus other than Wikipedia then add a component in utils/format and re-use the formatting step from format_wikipedia.py.

NOTE 2: if you want to process the whole English Wikipedia then run the command and forget about it, it will take a while... 😴 This process can probably be better optimized.

Pre-training Data generation

Now that we have our formatted Wikipedia corpus, there is one more step before we can actually run the pre-training. In fact, in order to pre-train models in a reasonable amount of time, we will be relying on multiple GPUs, DistributedDataParallel and the torch.distributed module. This will effectively have a copy of the model on each GPU, so we will need to split our corpus into shards (or chunks) so that each GPUs can process its own shard while others do the same.

First, we will split the corpus into 4096 training and 16 validation shards of equal size.

NOTE: you can change the amount of shards as you like. These numbers were chosen so to keep the memory requirement for loading a single shard relatively low as well as to keep validation steps (a single epoch through the validation shards) relatively fast.

WORKDIR=$WORKDIR \
    python make_shards.py \
        --formatted_corpus_path=$WORKDIR/data/formatted/wikipedia_en/wikipedia_en.formatted.txt \
        --n_training_shards=4096 \
        --n_validation_shards=16 \
        --random_seed=42

The command above creates multiple training{n}.txt and validation.{n}.txt files in data/shards/wikipedia_en/.

The second and last step is to convert each shard into and .hdf5 file containing the actual pre-training data. But before doing that, we need to define a vocabulary for the Masked Language Modelling if we want to pre-train CharacterBERT.

NOTE 1: In fact, when pre-training BERT, since all original tokens from the corpus are split into elements of the WordPiece vocabulary, we can simply re-use this same vocabulary as a target space for MLM. And since CharacterBERT does not rely on WordPieces, it cannot do that and requires a fresh token vocabulary for Masked Language Modeling.

NOTE 2: Be careful when re-training a model from a domain A on texts from a domain B as this will require a new MLM vocabulary (for B) which in turn would require replacing the output layer in prior checkpoints (from A) before resuming pre-training. As for this version of the code, you will need to do that manually before running the pre-training.

WORKDIR=$WORKDIR \
    python build_mlm_vocabulary.py \
        --formatted_corpus_path=$WORKDIR/data/formatted/wikipedia_en/wikipedia_en.formatted.txt

After building a MLM vocabulary (in cases where we want to pre-train CharacterBERT) we can now generate the data for both phases 1 and 2 of the pre-training process.

  • phase 1: maximum input length of 128 and maximum number of masked tokens per input of 20.
WORKDIR=$WORKDIR \
    python make_hdf5.py \
        --shards_path=$WORKDIR/data/shards/wikipedia_en/ \
        --output_directory=$WORKDIR/data/hdf5/wikipedia_en/character_bert/128_20/ \
        --max_input_length=128 \
        --max_masked_tokens_per_input=20 \
        --is_character_bert  # change this accordingly
  • phase 2: maximum input length of 512 and maximum number of masked tokens per input of 80.
WORKDIR=$WORKDIR \
    python make_hdf5.py \
        --shards_path=$WORKDIR/data/shards/wikipedia_en/ \
        --output_directory=$WORKDIR/data/hdf5/wikipedia_en/character_bert/512_80/ \
        --max_input_length=512 \
        --max_masked_tokens_per_input=80 \
        --is_character_bert  # change this accordingly

NOTE: if you want to generate data for BERT instead of CharacterBERT, remove the --is_character_bert flag and adapt the output_directory path.

Pre-training

Launching the pre-training

At this point we are all set to start pre-training models. For that, we can simply run the following bash scripts.

NOTE: you may need to change the value of WORKDIR in the pre-training scripts.

  • For phase 1:
bash $WORKDIR/bash_scripts/run_pretraining.character_bert.step_1.sh

or

bash $WORKDIR/bash_scripts/run_pretraining.bert.step_1.sh
  • For phase 2:
bash $WORKDIR/bash_scripts/run_pretraining.character_bert.step_2.sh

or

bash $WORKDIR/bash_scripts/run_pretraining.bert.step_2.sh

NOTE 1: you should change the NUM_GPUs variable inside the bash scripts to match the number of GPUs on your machine. The parallelization will be handled automatically.

NOTE 2: the bash scripts support distributed training on multiple gpus within a single node. Bash scripts that can run on multiple nodes with sbatch will be available soon.

Running the bash scripts on large enough corpora should produce good results. However, if you want to customize the pre-training process, you could change any of the parameters from pretrain_model.py.

For a complete list of parameters, run the following command.

WORKDIR=$WORKDIR python pretrain_model.py --help

In particular, if you don't want to run a validation step before each checkpoint you can remove the --do_validation flag. This will make the pre-training process faster but as a result you will not be able to tell if the language models are overfitting the training data.

Monitoring the pre-training

While the models are pre-training you can monitor the average training and validation losses (MLM + NSP loss) using TensorBoard.

tensorboard --logdir=$WORKDIR/.tensorboard_logs/

References

Please cite our paper if you use CharacterBERT in your work.

@inproceedings{el-boukkouri-etal-2020-characterbert,
    title = "{C}haracter{BERT}: Reconciling {ELM}o and {BERT} for Word-Level Open-Vocabulary Representations From Characters",
    author = "El Boukkouri, Hicham  and
      Ferret, Olivier  and
      Lavergne, Thomas  and
      Noji, Hiroshi  and
      Zweigenbaum, Pierre  and
      Tsujii, Jun{'}ichi",
    booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
    month = dec,
    year = "2020",
    address = "Barcelona, Spain (Online)",
    publisher = "International Committee on Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.coling-main.609",
    doi = "10.18653/v1/2020.coling-main.609",
    pages = "6903--6915",
    abstract = "Due to the compelling improvements brought by BERT, many recent representation models adopted the Transformer architecture as their main building block, consequently inheriting the wordpiece tokenization system despite it not being intrinsically linked to the notion of Transformers. While this system is thought to achieve a good balance between the flexibility of characters and the efficiency of full words, using predefined wordpiece vocabularies from the general domain is not always suitable, especially when building models for specialized domains (e.g., the medical domain). Moreover, adopting a wordpiece tokenization shifts the focus from the word level to the subword level, making the models conceptually more complex and arguably less convenient in practice. For these reasons, we propose CharacterBERT, a new variant of BERT that drops the wordpiece system altogether and uses a Character-CNN module instead to represent entire words by consulting their characters. We show that this new model improves the performance of BERT on a variety of medical domain tasks while at the same time producing robust, word-level, and open-vocabulary representations.",
}
Owner
Hicham EL BOUKKOURI
PhD Student working on Domain Adaptation of Word Embeddings.
Hicham EL BOUKKOURI
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023