CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overview

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax

⚠️ Latest: Current repo is a complete version. But we delete many redundant codes and are still under testing now.

This repo is the official implementation for CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax. [Paper] [Supp] [Slides] [Video] [Code and models]

Note: Current code is still not very clean yet. We are still working on it, and it will be updated soon.

Framework

Requirements

1. Environment:

The requirements are exactly the same as mmdetection v1.0.rc0. We tested on on the following settings:

  • python 3.7
  • cuda 9.2
  • pytorch 1.3.1+cu92
  • torchvision 0.4.2+cu92
  • mmcv 0.2.14
HH=`pwd`
conda create -n mmdet python=3.7 -y
conda activate mmdet

pip install cython
pip install numpy
pip install torch
pip install torchvision
pip install pycocotools
pip install mmcv
pip install matplotlib
pip install terminaltables

cd lvis-api/
python setup.py develop

cd $HH
python setup.py develop

2. Data:

a. For dataset images:

# Make sure you are in dir BalancedGroupSoftmax

mkdir data
cd data
mkdir lvis
mkdir pretrained_models
  • If you already have COCO2017 dataset, it will be great. Link train2017 and val2017 folders under folder lvis.
  • If you do not have COCO2017 dataset, please download: COCO train set and COCO val set and unzip these files and mv them under folder lvis.

b. For dataset annotations:

To train HTC models, download COCO stuff annotations and change the name of folder stuffthingmaps_trainval2017 to stuffthingmaps.

c. For pretrained models:

Download the corresponding pre-trained models below.

  • To train baseline models, we need models trained on COCO to initialize. Please download the corresponding COCO models at mmdetection model zoo.
  • To train balanced group softmax models (shorted as gs models), we need corresponding baseline models trained on LVIS to initialize and fix all parameters except for the last FC layer.
  • Move these model files to ./data/pretrained_models/

d. For intermediate files (for BAGS and reweight models only):

You can either donwnload or generate them before training and testing. Put them under ./data/lvis/.

  • BAGS models: label2binlabel.pt, pred_slice_with0.pt, valsplit.pkl
  • Re-weight models: cls_weight.pt, cls_weight_bours.pt
  • RFS models: class_to_imageid_and_inscount.pt

After all these operations, the folder data should be like this:

    data
    ├── lvis
    │   ├── lvis_v0.5_train.json
    │   ├── lvis_v0.5_val.json
    │   ├── stuffthingmaps (Optional, for HTC models only)
    │   ├── label2binlabel.pt (Optional, for GAGS models only)
    │   ├── ...... (Other intermidiate files)
    │   │   ├── train2017
    │   │   │   ├── 000000004134.png
    │   │   │   ├── 000000031817.png
    │   │   │   ├── ......
    │   │   └── val2017
    │   │       ├── 000000424162.png
    │   │       ├── 000000445999.png
    │   │       ├── ......
    │   ├── train2017
    │   │   ├── 000000100582.jpg
    │   │   ├── 000000102411.jpg
    │   │   ├── ......
    │   └── val2017
    │       ├── 000000062808.jpg
    │       ├── 000000119038.jpg
    │       ├── ......
    └── pretrained_models
        ├── faster_rcnn_r50_fpn_2x_20181010-443129e1.pth
        ├── ......

Training

Note: Please make sure that you have prepared the pre-trained models and intermediate files and they have been put to the path specified in ${CONIFG_FILE}.

Use the following commands to train a model.

# Single GPU
python tools/train.py ${CONFIG_FILE}

# Multi GPU distributed training
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

All config files are under ./configs/.

  • ./configs/bags: all models for Balanced Group Softmax.
  • ./configs/baselines: all baseline models.
  • ./configs/transferred: transferred models from long-tail image classification.
  • ./configs/ablations: models for ablation study.

For example, to train a BAGS model with Faster R-CNN R50-FPN:

# Single GPU
python tools/train.py configs/bags/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.py

# Multi GPU distributed training (for 8 gpus)
./tools/dist_train.sh configs/bags/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.py 8

Important: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8*2 = 16). According to the Linear Scaling Rule, you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu. (Cited from mmdetection.)

Testing

Note: Please make sure that you have prepared the intermediate files and they have been put to the path specified in ${CONIFG_FILE}.

Use the following commands to test a trained model.

# single gpu test
python tools/test_lvis.py \
 ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]

# multi-gpu testing
./tools/dist_test_lvis.sh \
 ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
  • $RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.
  • $EVAL_METRICS: Items to be evaluated on the results. bbox for bounding box evaluation only. bbox segm for bounding box and mask evaluation.

For example (assume that you have downloaded the corresponding model file to ./data/downloaded_models):

  • To evaluate the trained BAGS model with Faster R-CNN R50-FPN for object detection:
# single-gpu testing
python tools/test_lvis.py configs/bags/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.py \
 ./donwloaded_models/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.pth \
  --out gs_box_result.pkl --eval bbox

# multi-gpu testing (8 gpus)
./tools/dist_test_lvis.sh configs/bags/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.py \
./donwloaded_models/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.pth 8 \
--out gs_box_result.pkl --eval bbox
  • To evaluate the trained BAGS model with Mask R-CNN R50-FPN for instance segmentation:
# single-gpu testing
python tools/test_lvis.py configs/bags/gs_mask_rcnn_r50_fpn_1x_lvis.py \
 ./donwloaded_models/gs_mask_rcnn_r50_fpn_1x_lvis.pth \
  --out gs_mask_result.pkl --eval bbox segm

# multi-gpu testing (8 gpus)
./tools/dist_test_lvis.sh configs/bags/gs_mask_rcnn_r50_fpn_1x_lvis.py \
./donwloaded_models/gs_mask_rcnn_r50_fpn_1x_lvis.pth 8 \
--out gs_mask_result.pkl --eval bbox segm

The evaluation results will be shown in markdown table format:

| Type | IoU | Area | MaxDets | CatIds | Result |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  (AP)  | 0.50:0.95 |    all | 300 |          all | 25.96% |
|  (AP)  | 0.50      |    all | 300 |          all | 43.58% |
|  (AP)  | 0.75      |    all | 300 |          all | 27.15% |
|  (AP)  | 0.50:0.95 |      s | 300 |          all | 20.26% |
|  (AP)  | 0.50:0.95 |      m | 300 |          all | 32.81% |
|  (AP)  | 0.50:0.95 |      l | 300 |          all | 40.10% |
|  (AP)  | 0.50:0.95 |    all | 300 |            r | 17.66% |
|  (AP)  | 0.50:0.95 |    all | 300 |            c | 25.75% |
|  (AP)  | 0.50:0.95 |    all | 300 |            f | 29.55% |
|  (AR)  | 0.50:0.95 |    all | 300 |          all | 34.76% |
|  (AR)  | 0.50:0.95 |      s | 300 |          all | 24.77% |
|  (AR)  | 0.50:0.95 |      m | 300 |          all | 41.50% |
|  (AR)  | 0.50:0.95 |      l | 300 |          all | 51.64% |

Results and models

The main results on LVIS val set:

LVIS val results

Models:

Please refer to our paper and supp for more details.

ID Models bbox mAP / mask mAP Train Test Config file Pretrained Model Train part Model
(1) Faster R50-FPN 20.98 file COCO R50 All Google drive
(2) x2 21.93 file Model (1) All Google drive
(3) Finetune tail 22.28 × file Model (1) All Google drive
(4) RFS 23.41 file COCO R50 All Google drive
(5) RFS-finetune 22.66 file Model (1) All Google drive
(6) Re-weight 23.48 file Model (1) All Google drive
(7) Re-weight-cls 24.66 file Model (1) Cls Google drive
(8) Focal loss 11.12 × file Model (1) All Google drive
(9) Focal loss-cls 19.29 × file Model (1) Cls Google drive
(10) NCM-fc 16.02 × × Model (1)
(11) NCM-conv 12.56 × × Model (1)
(12) $\tau$-norm 11.01 × × Model (1) Cls
(13) $\tau$-norm-select 21.61 × × Model (1) Cls
(14) Ours (Faster R50-FPN) 25.96 file Model (1) Cls Google drive
(15) Faster X101-64x4d 24.63 file COCO x101 All Google drive
(16) Ours (Faster X101-64x4d) 27.83 file Model (15) Cls Google drive
(17) Cascade X101-64x4d 27.16 file COCO cascade x101 All Google drive
(18) Ours (Cascade X101-64x4d) 32.77 file Model (17) Cls Google drive
(19) Mask R50-FPN 20.78/20.68 file COCO mask r50 All Google drive
(20) Ours (Mask R50-FPN) 25.76/26.25 file Model (19) Cls Google drive
(21) HTC X101-64x4d 31.28/29.28 file COCO HTC x101 All Google drive
(22) Ours (HTC X101-64x4d) 33.68/31.20 file Model (21) Cls Google drive
(23) HTC X101-64x4d-MS-DCN 34.61/31.94 file COCO HTC x101-ms-dcn All Google drive
(24) Ours (HTC X101-64x4d-MS-DCN) 37.71/34.39 file Model (23) Cls Google drive

PS: in column Pretrained Model, the file of Model (n) is the same as the Google drive file in column Model in row (n).

Citation

@inproceedings{li2020overcoming,
  title={Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax},
  author={Li, Yu and Wang, Tao and Kang, Bingyi and Tang, Sheng and Wang, Chunfeng and Li, Jintao and Feng, Jiashi},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10991--11000},
  year={2020}
}

Credit

This code is largely based on mmdetection v1.0.rc0 and LVIS API.

Owner
FishYuLi
happy
FishYuLi
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022