An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Overview

Bottom-Up and Top-Down Attention for Visual Question Answering

An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

The implementation follows the VQA system described in "Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering" (https://arxiv.org/abs/1707.07998) and "Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge" (https://arxiv.org/abs/1708.02711).

Results

Model Validation Accuracy Training Time
Reported Model 63.15 12 - 18 hours (Tesla K40)
Implemented Model 63.58 40 - 50 minutes (Titan Xp)

The accuracy was calculated using the VQA evaluation metric.

About

This is part of a project done at CMU for the course 11-777 Advanced Multimodal Machine Learning and a joint work between Hengyuan Hu, Alex Xiao, and Henry Huang.

As part of our project, we implemented bottom up attention as a strong VQA baseline. We were planning to integrate object detection with VQA and were very glad to see that Peter Anderson and Damien Teney et al. had already done that beautifully. We hope this clean and efficient implementation can serve as a useful baseline for future VQA explorations.

Implementation Details

Our implementation follows the overall structure of the papers but with the following simplifications:

  1. We don't use extra data from Visual Genome.
  2. We use only a fixed number of objects per image (K=36).
  3. We use a simple, single stream classifier without pre-training.
  4. We use the simple ReLU activation instead of gated tanh.

The first two points greatly reduce the training time. Our implementation takes around 200 seconds per epoch on a single Titan Xp while the one described in the paper takes 1 hour per epoch.

The third point is simply because we feel the two stream classifier and pre-training in the original paper is over-complicated and not necessary.

For the non-linear activation unit, we tried gated tanh but couldn't make it work. We also tried gated linear unit (GLU) and it works better than ReLU. Eventually we choose ReLU due to its simplicity and since the gain from using GLU is too small to justify the fact that GLU doubles the number of parameters.

With these simplifications we would expect the performance to drop. For reference, the best result on validation set reported in the paper is 63.15. The reported result without extra data from visual genome is 62.48, the result using only 36 objects per image is 62.82, the result using two steam classifier but not pre-trained is 62.28 and the result using ReLU is 61.63. These numbers are cited from the Table 1 of the paper: "Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge". With all the above simplification aggregated, our first implementation got around 59-60 on validation set.

To shrink the gap, we added some simple but powerful modifications. Including:

  1. Add dropout to alleviate overfitting
  2. Double the number of neurons
  3. Add weight normalization (BN seems not work well here)
  4. Switch to Adamax optimizer
  5. Gradient clipping

These small modifications bring the number back to ~62.80. We further change the concatenation based attention module in the original paper to a projection based module. This new attention module is inspired by the paper "Modeling Relationships in Referential Expressions with Compositional Modular Networks" (https://arxiv.org/pdf/1611.09978.pdf), but with some modifications (implemented in attention.NewAttention). With the help of this new attention, we boost the performance to ~63.58, surpassing the reported best result with no extra data and less computation cost.

Usage

Prerequisites

Make sure you are on a machine with a NVIDIA GPU and Python 2 with about 70 GB disk space.

  1. Install PyTorch v0.3 with CUDA and Python 2.7.
  2. Install h5py.

Data Setup

All data should be downloaded to a 'data/' directory in the root directory of this repository.

The easiest way to download the data is to run the provided script tools/download.sh from the repository root. The features are provided by and downloaded from the original authors' repo. If the script does not work, it should be easy to examine the script and modify the steps outlined in it according to your needs. Then run tools/process.sh from the repository root to process the data to the correct format.

Training

Simply run python main.py to start training. The training and validation scores will be printed every epoch, and the best model will be saved under the directory "saved_models". The default flags should give you the result provided in the table above.

Owner
Hengyuan Hu
Hengyuan Hu
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Özlem Taşkın 0 Feb 23, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023