CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Related tags

Deep LearningCLADE
Overview

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

Architecture

ArXiv Paper

Zhentao Tan, Dongdong Chen, Qi Chu, Menglei Chai, Jing Liao, Mingming He, Lu Yuan, Gang Hua, Nenghai Yu

Abstract

Spatially-adaptive normalization SPADE is remarkably successful recently in conditional semantic image synthesis, which modulates the normalized activation with spatially-varying transformations learned from semantic layouts, to prevent the semantic information from being washed away. Despite its impressive performance, a more thorough understanding of the advantages inside the box is still highly demanded to help reduce the significant computation and parameter overhead introduced by this novel structure. In this paper, from a return-on-investment point of view, we conduct an in-depth analysis of the effectiveness of this spatially-adaptive normalization and observe that its modulation parameters benefit more from semantic-awareness rather than spatial-adaptiveness, especially for high-resolution input masks. Inspired by this observation, we propose class-adaptive normalization (CLADE), a lightweight but equally-effective variant that is only adaptive to semantic class. In order to further improve spatial-adaptiveness, we introduce intra-class positional map encoding calculated from semantic layouts to modulate the normalization parameters of CLADE and propose a truly spatially-adaptive variant of CLADE, namely CLADE-ICPE. %Benefiting from this design, CLADE greatly reduces the computation cost while being able to preserve the semantic information in the generation. Through extensive experiments on multiple challenging datasets, we demonstrate that the proposed CLADE can be generalized to different SPADE-based methods while achieving comparable generation quality compared to SPADE, but it is much more efficient with fewer extra parameters and lower computational cost.

Installation

Clone this repo.

git clone https://github.com/tzt101/CLADE.git
cd CLADE/

This code requires PyTorch 1.6 and python 3+. Please install dependencies by

pip install -r requirements.txt

Dataset Preparation

The Cityscapes, COCO-Stuff and ADE20K dataset can be download and prepared following SPADE. We provide the ADE20K-outdoor dataset selected by ourselves in OneDrive.

To make the distance mask which called intra-class positional encoding map in the paper, you can use the following commands:

python uitl/cal_dist_masks.py --path [Path_to_dataset] --dataset [ade20k | coco | cityscapes]

By default, the distance mask is normalized. If you do not want it, please set --norm no.

Generating Images Using Pretrained Model

Once the dataset is ready, the result images can be generated using pretrained models.

  1. Download the pretrained models from the OneDrive, save it in checkpoints/. The structure is as follows:
./checkpoints/
    ade20k/
        best_net_G.pth
    ade20k_dist/
        best_net_G.pth
    ade20k_outdoor/
        best_net_G.pth
    ade20k_outdoor_dist/
        best_net_G.pth
    cityscapes/
        best_net_G.pth
    cityscapes_dist/
        best_net_G.pth
    coco/
        best_net_G.pth
    coco_dist/
        best_net_G.pth

_dist means that the model use the additional positional encoding, called CLADE-ICPE in the paper.

  1. Generate the images on the test dataset.
python test.py --name [model_name] --norm_mode clade --batchSize 1 --gpu_ids 0 --which_epoch best --dataset_mode [dataset] --dataroot [Path_to_dataset]

[model_name] is the directory name of the checkpoint file downloaded in Step 1, such as ade20k and coco. [dataset] can be on of ade20k, ade20koutdoor, cityscapes and coco. [Path_to_dataset] is the path to the dataset. If you want to test CALDE-ICPE, the command is as follows:

python test.py --name [model_name] --norm_mode clade --batchSize 1 --gpu_ids 0 --which_epoch best --dataset_mode [dataset] --dataroot [Path_to_dataset] --add_dist

Training New Models

You can train your own model with the following command:

# To train CLADE and CLADE-ICPE.
python train.py --name [experiment_name] --dataset_mode [dataset] --norm_mode clade --dataroot [Path_to_dataset]
python train.py --name [experiment_name] --dataset_mode [dataset] --norm_mode clade --dataroot [Path_to_dataset] --add_dist

If you want to test the model during the training step, please set --train_eval. By default, the model every 10 epoch will be test in terms of FID. Finally, the model with best FID score will be saved as best_net_G.pth.

Calculate FID

We provide the code to calculate the FID which is based on rpo. We have pre-calculated the distribution of real images (all images are resized to 256×256 except cityscapes is 512×256) in training set of each dataset and saved them in ./datasets/train_mu_si/. You can run the following command:

python fid_score.py [Path_to_real_image] [Path_to_fake_image] --batch-size 1 --gpu 0 --load_np_name [dataset] --resize [Size]

The provided [dataset] are: ade20k, ade20koutdoor, cityscapes and coco. You can save the new dataset by replacing --load_np_name [dataset] with --save_np_name [dataset].

New Useful Options

The new options are as follows:

  • --use_amp: if specified, use AMP training mode.
  • --train_eval: if sepcified, evaluate the model during training.
  • --eval_dims: the default setting is 2048, Dimensionality of Inception features to use.
  • --eval_epoch_freq: the default setting is 10, frequency of calculate fid score at the end of epochs.

Code Structure

  • train.py, test.py: the entry point for training and testing.
  • trainers/pix2pix_trainer.py: harnesses and reports the progress of training.
  • models/pix2pix_model.py: creates the networks, and compute the losses
  • models/networks/: defines the architecture of all models
  • options/: creates option lists using argparse package. More individuals are dynamically added in other files as well. Please see the section below.
  • data/: defines the class for loading images and label maps.

Citation

If you use this code for your research, please cite our papers.

@article{tan2021efficient,
  title={Efficient Semantic Image Synthesis via Class-Adaptive Normalization},
  author={Tan, Zhentao and Chen, Dongdong and Chu, Qi and Chai, Menglei and Liao, Jing and He, Mingming and Yuan, Lu and Hua, Gang and Yu, Nenghai},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}
@article{tan2020rethinking,
  title={Rethinking Spatially-Adaptive Normalization},
  author={Tan, Zhentao and Chen, Dongdong and Chu, Qi and Chai, Menglei and Liao, Jing and He, Mingming and Yuan, Lu and Yu, Nenghai},
  journal={arXiv preprint arXiv:2004.02867},
  year={2020}
}
@article{tan2020semantic,
  title={Semantic Image Synthesis via Efficient Class-Adaptive Normalization},
  author={Tan, Zhentao and Chen, Dongdong and Chu, Qi and Chai, Menglei and Liao, Jing and He, Mingming and Yuan, Lu and Gang Hua and Yu, Nenghai},
  journal={arXiv preprint arXiv:2012.04644},
  year={2020}
}

Acknowledgments

This code borrows heavily from SPADE.

A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022