PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Overview

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning

PyTorch code for the ICCV 2021 paper:
Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning
James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen, Hongxia Jin, Zsolt Kira
International Conference on Computer Vision (ICCV), 2021
[arXiv] [pdf] [project]

Abstract

Modern computer vision applications suffer from catastrophic forgetting when incrementally learning new concepts over time. The most successful approaches to alleviate this forgetting require extensive replay of previously seen data, which is problematic when memory constraints or data legality concerns exist. In this work, we consider the high-impact problem of Data-Free Class-Incremental Learning (DFCIL), where an incremental learning agent must learn new concepts over time without storing generators or training data from past tasks. One approach for DFCIL is to replay synthetic images produced by inverting a frozen copy of the learner's classification model, but we show this approach fails for common class-incremental benchmarks when using standard distillation strategies. We diagnose the cause of this failure and propose a novel incremental distillation strategy for DFCIL, contributing a modified cross-entropy training and importance-weighted feature distillation, and show that our method results in up to a 25.1% increase in final task accuracy (absolute difference) compared to SOTA DFCIL methods for common class-incremental benchmarks. Our method even outperforms several standard replay based methods which store a coreset of images.

Installation

Prerequisites

  • python == 3.6
  • torch == 1.0.1
  • torchvision >= 0.2.1

Setup

Datasets

Download/Extract the following datasets to the dataset folder under the project root directory.

  • For CIFAR-10 and CIFAR-100, download the python version dataset here.

Training

All commands should be run under the project root directory.

sh experiments/cifar100-fivetask.sh # tables 1,2
sh experiments/cifar100-tentask.sh # tables 1,2
sh experiments/cifar100-twentytask.sh # tables 1,2

Results

Results are generated for various task sizes. See the main text for full details. Numbers represent final accuracy in three runs (higher the better).

CIFAR-100 (no coreset)

tasks 5 10 20
UB 69.9 ± 0.2 69.9 ± 0.2 69.9 ± 0.2
Base 16.4 ± 0.4 8.8 ± 0.1 4.4 ± 0.3
LwF 17.0 ± 0.1 9.2 ± 0.0 4.7 ± 0.1
LwF.MC 32.5 ± 1.0 17.1 ± 0.1 7.7 ± 0.5
DGR 14.4 ± 0.4 8.1 ± 0.1 4.1 ± 0.3
DeepInversion 18.8 ± 0.3 10.9 ± 0.6 5.7 ± 0.3
Ours 43.9 ± 0.9 33.7 ± 1.2 20.0 ± 1.4

CIFAR-100 (with 2000 image coreset)

tasks 5 10 20
UB 69.9 ± 0.2 69.9 ± 0.2 69.9 ± 0.2
Naive Rehearsal 34.0 ± 0.2 24.0 ± 1.0 14.9 ± 0.7
LwF 39.4 ± 0.3 27.4 ± 0.8 16.6 ± 0.4
E2E 47.4 ± 0.8 38.4 ± 1.3 32.7 ± 1.9
BiC 53.7 ± 0.4 45.9 ± 1.8 37.5 ± 3.2
Ours (no coreset) 43.9 ± 0.9 33.7 ± 1.2 20.0 ± 1.4

Acknowledgement

This work is supported by Samsung Research America.

Citation

If you found our work useful for your research, please cite our work:

@article{smith2021always,
  author    = {Smith, James and Hsu, Yen-Chang and Balloch, Jonathan and Shen, Yilin and Jin, Hongxia and Kira, Zsolt},
  title     = {Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  month     = {October},
  year      = {2021},
  pages     = {9374-9384}
}
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021