PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Overview

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning

PyTorch code for the ICCV 2021 paper:
Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning
James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen, Hongxia Jin, Zsolt Kira
International Conference on Computer Vision (ICCV), 2021
[arXiv] [pdf] [project]

Abstract

Modern computer vision applications suffer from catastrophic forgetting when incrementally learning new concepts over time. The most successful approaches to alleviate this forgetting require extensive replay of previously seen data, which is problematic when memory constraints or data legality concerns exist. In this work, we consider the high-impact problem of Data-Free Class-Incremental Learning (DFCIL), where an incremental learning agent must learn new concepts over time without storing generators or training data from past tasks. One approach for DFCIL is to replay synthetic images produced by inverting a frozen copy of the learner's classification model, but we show this approach fails for common class-incremental benchmarks when using standard distillation strategies. We diagnose the cause of this failure and propose a novel incremental distillation strategy for DFCIL, contributing a modified cross-entropy training and importance-weighted feature distillation, and show that our method results in up to a 25.1% increase in final task accuracy (absolute difference) compared to SOTA DFCIL methods for common class-incremental benchmarks. Our method even outperforms several standard replay based methods which store a coreset of images.

Installation

Prerequisites

  • python == 3.6
  • torch == 1.0.1
  • torchvision >= 0.2.1

Setup

Datasets

Download/Extract the following datasets to the dataset folder under the project root directory.

  • For CIFAR-10 and CIFAR-100, download the python version dataset here.

Training

All commands should be run under the project root directory.

sh experiments/cifar100-fivetask.sh # tables 1,2
sh experiments/cifar100-tentask.sh # tables 1,2
sh experiments/cifar100-twentytask.sh # tables 1,2

Results

Results are generated for various task sizes. See the main text for full details. Numbers represent final accuracy in three runs (higher the better).

CIFAR-100 (no coreset)

tasks 5 10 20
UB 69.9 ± 0.2 69.9 ± 0.2 69.9 ± 0.2
Base 16.4 ± 0.4 8.8 ± 0.1 4.4 ± 0.3
LwF 17.0 ± 0.1 9.2 ± 0.0 4.7 ± 0.1
LwF.MC 32.5 ± 1.0 17.1 ± 0.1 7.7 ± 0.5
DGR 14.4 ± 0.4 8.1 ± 0.1 4.1 ± 0.3
DeepInversion 18.8 ± 0.3 10.9 ± 0.6 5.7 ± 0.3
Ours 43.9 ± 0.9 33.7 ± 1.2 20.0 ± 1.4

CIFAR-100 (with 2000 image coreset)

tasks 5 10 20
UB 69.9 ± 0.2 69.9 ± 0.2 69.9 ± 0.2
Naive Rehearsal 34.0 ± 0.2 24.0 ± 1.0 14.9 ± 0.7
LwF 39.4 ± 0.3 27.4 ± 0.8 16.6 ± 0.4
E2E 47.4 ± 0.8 38.4 ± 1.3 32.7 ± 1.9
BiC 53.7 ± 0.4 45.9 ± 1.8 37.5 ± 3.2
Ours (no coreset) 43.9 ± 0.9 33.7 ± 1.2 20.0 ± 1.4

Acknowledgement

This work is supported by Samsung Research America.

Citation

If you found our work useful for your research, please cite our work:

@article{smith2021always,
  author    = {Smith, James and Hsu, Yen-Chang and Balloch, Jonathan and Shen, Yilin and Jin, Hongxia and Kira, Zsolt},
  title     = {Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  month     = {October},
  year      = {2021},
  pages     = {9374-9384}
}
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022