Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Overview

Realistic Full-Body Anonymization with Surface-Guided GANs

This is the official source code for the paper "Realistic Full-Body Anonymization with Surface-Guided GANs".

[Arixv Paper] [Appendix]

Surface-guided GANs is an automatic full-body anonymization technique based on Generative Adversarial Networks.

The key idea of surface-guided GANs is to guide the generative model with dense pixel-to-surface information (based on continuous surface embeddings). This yields highly realistic anonymization result and allows for diverse anonymization.

Requirements

  • Pytorch >= 1.9
  • Torchvision >= 0.11
  • Python >= 3.8
  • CUDA capable device for training. Training was done with 1-4 32GB V100 GPUs.

Installation

We recommend to setup and install pytorch with anaconda following the pytorch installation instructions.

  1. Clone repository: git clone https://github.com/hukkelas/full_body_anonymization/.
  2. Install using setup.py:
pip install -e .

Test the model

The file anonymize.py can anonymize image paths, directories and videos. python anonymize.py --help prints the different options.

To anonymize, visualize and save an output image, you can write:

python3 anonymize.py configs/surface_guided/configE.py coco_val2017_000000001000.jpg --visualize --save

The truncation value decides the "creativity" of the generator, which you can specify in the range (0, 1). Setting -t 1 will generate diverse anonymization between individuals in the image. We recommend to set it to t=0.5 to tradeoff between quality and diversity.

python3 anonymize.py configs/surface_guided/configE.py coco_val2017_000000001000.jpg --visualize --save -t 1

Pre-trained models

Current release includes a pre-trained model for ConfigE from the main paper. More pre-trained models will be released later.

Train the model

Instructions to train and reproduce results from the paper will be released by January 14th 2022.

License

All code, except the stated below, is released under MIT License.

Code under has are provided with other licenses:

Citation

If you use this code for your research, please cite:

@misc{hukkelås2022realistic,
      title={Realistic Full-Body Anonymization with Surface-Guided GANs}, 
      author={Håkon Hukkelås and Morten Smebye and Rudolf Mester and Frank Lindseth},
      year={2022},
      eprint={2201.02193},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Håkon Hukkelås
Interested in generative models, autonomous vehicles and other deep learning areas.
Håkon Hukkelås
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
Syed Waqas Zamir 906 Dec 30, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
202 Jan 06, 2023
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023