Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

Overview

🦩 Flamingo - Pytorch

Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the perceiver resampler (including the scheme where the learned queries contributes keys / values to be attended to, in addition to media embeddings), the specialized masked cross attention blocks, and finally the tanh gating at the ends of the cross attention + corresponding feedforward blocks

Install

$ pip install flamingo-pytorch

Usage

import torch
from flamingo_pytorch import PerceiverResampler

perceive = PerceiverResampler(
    dim = 1024,
    depth = 2,
    dim_head = 64,
    heads = 8,
    num_latents = 64,    # the number of latents to shrink your media sequence to, perceiver style
    num_time_embeds = 4  # say you have 4 images maximum in your dialogue
)

medias = torch.randn(1, 2, 256, 1024) # (batch, time, sequence length, dimension)
perceived = perceive(medias) # (1, 2, 64, 1024) - (batch, time, num latents, dimension)

Then you insert the GatedCrossAttentionBlock at different intervals in your giant language model. Your text would then attend to the perceived media from above

The recommended way to derive the media_locations boolean tensor would be to allocate a special token id to the media, and then, at the start of your large language model, do media_locations = text_id == media_token_id

import torch
from flamingo_pytorch import GatedCrossAttentionBlock

cross_attn = GatedCrossAttentionBlock(
    dim = 1024,
    dim_head = 64,
    heads = 8
)

text = torch.randn(1, 512, 1024)
perceived = torch.randn(1, 2, 64, 1024)

media_locations = torch.randint(0, 2, (1, 512)).bool()

text = cross_attn(
    text,
    perceived,
    media_locations = media_locations
)

That's it!

Attention is all you need.

Full working example with Flamingo + PaLM 🌴 🦩 🌴

Integration with PaLM

First install vit-pytorch for the vision encoder

$ pip install vit-pytorch

Then

from vit_pytorch.vit import ViT
from vit_pytorch.extractor import Extractor

vit = ViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 1024,
    depth = 6,
    heads = 16,
    mlp_dim = 2048,
    dropout = 0.1,
    emb_dropout = 0.1
)

vit = Extractor(vit, return_embeddings_only = True)

# first take your trained image encoder and wrap it in an adapter that returns the image embeddings
# here we use the ViT from the vit-pytorch library

import torch
from flamingo_pytorch import FlamingoPaLM

# a PaLM language model, the 540 billion parameter model from google that shows signs of general intelligence

flamingo_palm = FlamingoPaLM(
    num_tokens = 20000,          # number of tokens
    dim = 1024,                  # dimensions
    depth = 12,                  # depth
    heads = 8,                   # attention heads
    dim_head = 64,               # dimension per attention head
    img_encoder = vit,           # plugin your image encoder (this can be optional if you pass in the image embeddings separately, but probably want to train end to end given the perceiver resampler)
    media_token_id = 3,          # the token id representing the [media] or [image]
    cross_attn_every = 3,        # how often to cross attend
    perceiver_num_latents = 64,  # perceiver number of latents, should be smaller than the sequence length of the image tokens
    perceiver_depth = 2          # perceiver resampler depth
)

# train your PaLM as usual

text = torch.randint(0, 20000, (2, 512))

palm_logits = flamingo_palm(text)

# after much training off the regular PaLM logits
# now you are ready to train Flamingo + PaLM
# by passing in images, it automatically freezes everything but the perceiver and cross attention blocks, as in the paper

dialogue = torch.randint(0, 20000, (4, 512))
images = torch.randn(4, 2, 3, 256, 256)

flamingo_logits = flamingo_palm(dialogue, images)

# do your usual cross entropy loss

It is quite evident where this is all headed if you think beyond just images.

Inception

For factual correctness, just imagine where this system would stand if one were to use a state of the art retrieval language model as the base.

Citations

@article{Alayrac2022Flamingo,
    title   = {Flamingo: a Visual Language Model for Few-Shot Learning},
    author  = {Jean-Baptiste Alayrac et al},
    year    = {2022}
}
@inproceedings{Chowdhery2022PaLMSL,
    title   = {PaLM: Scaling Language Modeling with Pathways},
    author  = {Aakanksha Chowdhery and Sharan Narang and Jacob Devlin and Maarten Bosma and Gaurav Mishra and Adam Roberts and Paul Barham and Hyung Won Chung and Charles Sutton and Sebastian Gehrmann and Parker Schuh and Kensen Shi and Sasha Tsvyashchenko and Joshua Maynez and Abhishek Rao and Parker Barnes and Yi Tay and Noam M. Shazeer and Vinodkumar Prabhakaran and Emily Reif and Nan Du and Benton C. Hutchinson and Reiner Pope and James Bradbury and Jacob Austin and Michael Isard and Guy Gur-Ari and Pengcheng Yin and Toju Duke and Anselm Levskaya and Sanjay Ghemawat and Sunipa Dev and Henryk Michalewski and Xavier Garc{\'i}a and Vedant Misra and Kevin Robinson and Liam Fedus and Denny Zhou and Daphne Ippolito and David Luan and Hyeontaek Lim and Barret Zoph and Alexander Spiridonov and Ryan Sepassi and David Dohan and Shivani Agrawal and Mark Omernick and Andrew M. Dai and Thanumalayan Sankaranarayana Pillai and Marie Pellat and Aitor Lewkowycz and Erica Oliveira Moreira and Rewon Child and Oleksandr Polozov and Katherine Lee and Zongwei Zhou and Xuezhi Wang and Brennan Saeta and Mark Diaz and Orhan Firat and Michele Catasta and Jason Wei and Kathleen S. Meier-Hellstern and Douglas Eck and Jeff Dean and Slav Petrov and Noah Fiedel},
    year    = {2022}
}
Comments
  • PerceiverResampler missing some LayerNorms?

    PerceiverResampler missing some LayerNorms?

    Hey, it feels like PerceiverResampler is missing some LayerNorms? it seems to me we should layer-norm x before sending to attentions loop, and may be add layer-norm to ff(latents) + latents?

    opened by inspirit 7
  • Missing flatten op in PerceiverResampler?

    Missing flatten op in PerceiverResampler?

    Hi, It seems that Flamingo did "x_f = flatten(x_f) # [T, S, d] -> [T * S, d]" (batch size == 1) before putting x_f to attention.

    So, it should be like: medias = torch.randn(1, 2, 256, 1024) # (batch, time, sequence length, dimension) perceived = perceive(medias) # (1, 64, 1024) - (batch, num latents, dimension)

    ??

    opened by zengyan-97 6
  • wrong attention masks?

    wrong attention masks?

    https://github.com/lucidrains/flamingo-pytorch/blob/44920f4191ba3c280ff84c6ebc76025656d1dab5/flamingo_pytorch/flamingo_pytorch.py#L159

    In the flamingo paper, the language features in the gated cross-attention layers only attend to the visual features from the immediate preceding image. I believe your attention masks are created in such a way that they attend to the visual features from all preceding images. Can you confirm? If so, a fix would be to simply change the '>=' to '=='.

    opened by dhansmair 4
  • zeroing out attention not working

    zeroing out attention not working

    https://github.com/lucidrains/flamingo-pytorch/blob/749f8244794002371913d2fc4e7411afd5eddc67/flamingo_pytorch/flamingo_pytorch.py#L179

    you are not using the inplace version of the function: https://pytorch.org/docs/stable/generated/torch.Tensor.masked_fill_.html#torch.Tensor.masked_fill_

    so I think this line does not have an effect.

    Best, David

    opened by dhansmair 2
  • Applying parallel attn with ff to existing pretrained model?

    Applying parallel attn with ff to existing pretrained model?

    Hi - awesome work! I am trying to understand ? I couldn't find a paper - only a reference to https://github.com/kingoflolz/mesh-transformer-jax. Is this right? Am I understanding that it is bascially applying multiple operations of for qkv and ff at once? Is it possible to use this trick to modify an existing pretrained model?

    https://github.com/lucidrains/flamingo-pytorch/blob/749f8244794002371913d2fc4e7411afd5eddc67/flamingo_pytorch/flamingo_palm.py#L90

    Many thanks in advance!

    Huu

    opened by ontocord 1
  • How to use Flamingo for VQA task?

    How to use Flamingo for VQA task?

    Hi, Thanks for sharing this awesome implementation. I am very interested in using Flamingo model for my usecase. How I can use this implementation to get inference on my dataset for VQA task? I have certain images of products and want extract some information image of product by questioning it. How I can do it ?

    Please help.

    thanks

    opened by karndeepsingh 0
  • Fine-tuning of a model

    Fine-tuning of a model

    Hi, Thank you for this great work. I want to ask how can I fine-tune this model on my dataset for some downstream task like image captioning or image classification? If it is possible for you can you also please share the code?

    opened by ans92 0
  • Need a sample ipython notebook

    Need a sample ipython notebook

    Hello, @lucidrains,

    Thank you for providing this.

    For demo purposes, could you please provide a sample demo in Jupyter notebook?🫠

    Best, LITDataScience

    opened by LITDataScience 0
Releases(0.1.2)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022