9th place solution in "Santa 2020 - The Candy Cane Contest"

Overview

Santa 2020 - The Candy Cane Contest

My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place.

Basic Strategy

In this competition, the reward was decided by comparing the threshold and random generated number. It was easy to calculate the probability of getting reward if we knew the thresholds. But the agents can't see the threshold during the game, we had to estimate it.

Like other teams, I also downloaded the history by Kaggle API and created a dataset for supervised learning. We can see the true value of threshold at each round in the response of API. So, I used it as the target variable.

In the middle of the competition, I found out that quantile regression is much better than conventional L2 regression. I think it can adjust the balance between Explore and Exploit by the percentile parameter.

Features

        #         Name Explanation
#1 round number of round in the game (0-1999)
#2 last_opponent_chosen whether the opponent agent chose this machine in the last step or not
#3 second_last_opponent_chosen whether the opponent agent chose this machine in the second last step or not
#4 third_last_opponent_chosen whether the opponent agent chose this machine in the third last step or not
#5 opponent_repeat_twice whether the opponent agent continued to choose this machine in the last two rounds (#2 x #3)
#6 opponent_repeat_three_times whether the opponent agent continued to choose this machine in the last three rounds (#2 x #3 x #4)
#7 num_chosen how many times the opponent and my agent chose this machine
#8 num_chosen_mine how many times my agent chose this machine
#9 num_chosen_opponent how many time the opponent agent chose this machine (#7 - #8)
#10 num_get_reward how many time my agent got rewards from this machine
#11 num_non_reward how many time my agent didn't get rewarded from this machine
#12 rate_mine ratio of my choices against the total number of choices (#8 / #7)
#13 rate_opponent ratio of opponent choices against the total number of choices (#9 / #7)
#14 rate_get_reward ratio of my rewarded choices against the total number of choices (#10 / #7)
#15 empirical_win_rate posterior expectation of threshold value based on my choices and rewords
#16 quantile_10 10% point of posterior distribution of threshold based on my choices and rewords
#17 quantile_20 20% point of posterior distribution of threshold based on my choices and rewords
#18 quantile_30 30% point of posterior distribution of threshold based on my choices and rewords
#19 quantile_40 40% point of posterior distribution of threshold based on my choices and rewords
#20 quantile_50 50% point of posterior distribution of threshold based on my choices and rewords
#21 quantile_60 60% point of posterior distribution of threshold based on my choices and rewords
#22 quantile_70 70% point of posterior distribution of threshold based on my choices and rewords
#23 quantile_80 80% point of posterior distribution of threshold based on my choices and rewords
#24 quantile_90 90% point of posterior distribution of threshold based on my choices and rewords
#25 repeat_head how many times my agent chose this machine before the opponent agent chose this agent for the first time
#26 repeat_tail how many times my agent chose this machine after the opponent agent chose this agent last time
#27 repeat_get_reward_head how many times my agent got reward from this machine before my agent didn't get rewarded or the opponent agent chose this agent for the first time
#28 repeat_get_reward_tail how many times my agent got reward from this machine after my agent didn't get rewarded or the opponent agent chose this agent last time
#29 repeat_non_reward_head how many times my agent didn't get rewarded from this machine before my agent got reward or the opponent agent chose this agent for the first time
#30 repeat_non_reward_tail how many times my agent didn't get rewarded from this machine after my agent got reward or the opponent agent chose this agent last time
#31 opponent_repeat_head how many times the opponent agent chose this machine before my agent chose this machine for the first time
#32 opponent_repeat_tail how many times the opponent agent chose this machine after my agent chose this machine last time

Software

  • Python 3.7.8
  • numpy==1.18.5
  • pandas==1.0.5
  • matplotlib==3.2.2
  • lightgbm==3.1.1
  • catboost==0.24.4
  • xgboost==1.2.1
  • tqdm==4.47.0

Usage

  1. download data from Kaggle by /src/01_downlaod/download.py

  2. create a dataset by /src/02_[regressor]/preprocess.py

  3. train a model by /src/02_[regressor]/train.py

Top Agents

Regressor Loss NumRound LearningRate LB Score SubmissionID
LightBGM Quantile (0.65) 4000 0.05 1449.4 19318812
LightBGM Quantile (0.65) 4000 0.10 1442.1 19182047
LightBGM Quantile (0.65) 3000 0.03 1438.8 19042049
LightBGM Quantile (0.66) 3500 0.04 1433.9 19137024
CatBoost Quantile (0.65) 4000 0.05 1417.6 19153745
CatBoost Quantile (0.67) 3000 0.10 1344.5 19170829
LightGBM MSE 4000 0.03 1313.3 19093039
XGBoost Pairwised 1500 0.10 1173.5 19269952
Owner
toshi_k
toshi_k
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022