Official Pytorch Implementation of GraphiT

Related tags

Deep LearningGraphiT
Overview

GraphiT: Encoding Graph Structure in Transformers

This repository implements GraphiT, described in the following paper:

Grégoire Mialon*, Dexiong Chen*, Margot Selosse*, Julien Mairal. GraphiT: Encoding Graph Structure in Transformers.
*Equal contribution

Short Description about GraphiT

Figure from paper

GraphiT is an instance of transformers designed for graph-structured data. It takes as input a graph seen as a set of its node features, and integrates the graph structure via i) relative positional encoding using kernels on graphs and ii) encoding local substructures around each node, e.g, short paths, before adding it to the node features. GraphiT is able to outperform Graph Neural Networks in different graph classification and regression tasks, and offers promising visualization capabilities for domains where interpretability is important, e.g, in chemoinformatics.

Installation

Environment:

numpy=1.18.1
scipy=1.3.2
Cython=0.29.23
scikit-learn=0.22.1
matplotlib=3.4
networkx=2.5
python=3.7
pytorch=1.6
torch-geometric=1.7

The train folds and model weights for visualization are already provided at the correct location. Datasets will be downloaded via Pytorch geometric.

To begin with, run:

cd GraphiT
. s_env

To install GCKN, you also need to run:

make

Training GraphiT on graph classification and regression tasks

All our experimental scripts are in the folder experiments. So to start with, run cd experiments.

Classification

To train GraphiT on NCI1 with diffusion kernel, run:

python run_transformer_cv.py --dataset NCI1 --fold-idx 1 --pos-enc diffusion --beta 1.0

Here --fold-idx can be varied from 1 to 10 to train on a specified training fold. To test a selected model, just add the --test flag.

To include Laplacian positional encoding into input node features, run:

python run_transformer_cv.py --dataset NCI1 --fold-idx 1 --pos-enc diffusion --beta 1.0 --lappe --lap-dim 8

To include GCKN path features into input node features, run:

python run_transformer_gckn_cv.py --dataset NCI1 --fold-idx 1 --pos-enc diffusion --beta 1.0 --gckn-path 5

Regression

To train GraphiT on ZINC, run:

python run_transformer.py --pos-enc diffusion --beta 1.0

To include Laplacian positional encoding into input node features, run:

python run_transformer.py --pos-enc diffusion --beta 1.0 --lappe --lap-dim 8

To include GCKN path features into input node features, run:

python run_transformer_gckn.py --pos-enc diffusion --beta 1.0 --gckn-path 8

Visualizing attention scores

To visualize attention scores for GraphiT trained on Mutagenicity, run:

cd experiments
python visu_attention.py --idx-sample 10

To visualize Nitrothiopheneamide-methylbenzene, choose 10 as sample index. To visualize Aminofluoranthene, choose 2003 as sample index. If you want to test for other samples (i.e, other indexes), make sure that the model correctly predicts mutagenicity (class 0) for this sample.

Citation

To cite GraphiT, please use the following Bibtex snippet:

@misc{mialon2021graphit,
      title={GraphiT: Encoding Graph Structure in Transformers}, 
      author={Gr\'egoire Mialon and Dexiong Chen and Margot Selosse and Julien Mairal},
      year={2021},
      eprint={2106.05667},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Inria Thoth
A joint team of Inria and Laboratoire Jean Kuntzmann, we design models capable of representing visual information at scale from minimal supervision.
Inria Thoth
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022