Official Pytorch Implementation of GraphiT

Related tags

Deep LearningGraphiT
Overview

GraphiT: Encoding Graph Structure in Transformers

This repository implements GraphiT, described in the following paper:

Grégoire Mialon*, Dexiong Chen*, Margot Selosse*, Julien Mairal. GraphiT: Encoding Graph Structure in Transformers.
*Equal contribution

Short Description about GraphiT

Figure from paper

GraphiT is an instance of transformers designed for graph-structured data. It takes as input a graph seen as a set of its node features, and integrates the graph structure via i) relative positional encoding using kernels on graphs and ii) encoding local substructures around each node, e.g, short paths, before adding it to the node features. GraphiT is able to outperform Graph Neural Networks in different graph classification and regression tasks, and offers promising visualization capabilities for domains where interpretability is important, e.g, in chemoinformatics.

Installation

Environment:

numpy=1.18.1
scipy=1.3.2
Cython=0.29.23
scikit-learn=0.22.1
matplotlib=3.4
networkx=2.5
python=3.7
pytorch=1.6
torch-geometric=1.7

The train folds and model weights for visualization are already provided at the correct location. Datasets will be downloaded via Pytorch geometric.

To begin with, run:

cd GraphiT
. s_env

To install GCKN, you also need to run:

make

Training GraphiT on graph classification and regression tasks

All our experimental scripts are in the folder experiments. So to start with, run cd experiments.

Classification

To train GraphiT on NCI1 with diffusion kernel, run:

python run_transformer_cv.py --dataset NCI1 --fold-idx 1 --pos-enc diffusion --beta 1.0

Here --fold-idx can be varied from 1 to 10 to train on a specified training fold. To test a selected model, just add the --test flag.

To include Laplacian positional encoding into input node features, run:

python run_transformer_cv.py --dataset NCI1 --fold-idx 1 --pos-enc diffusion --beta 1.0 --lappe --lap-dim 8

To include GCKN path features into input node features, run:

python run_transformer_gckn_cv.py --dataset NCI1 --fold-idx 1 --pos-enc diffusion --beta 1.0 --gckn-path 5

Regression

To train GraphiT on ZINC, run:

python run_transformer.py --pos-enc diffusion --beta 1.0

To include Laplacian positional encoding into input node features, run:

python run_transformer.py --pos-enc diffusion --beta 1.0 --lappe --lap-dim 8

To include GCKN path features into input node features, run:

python run_transformer_gckn.py --pos-enc diffusion --beta 1.0 --gckn-path 8

Visualizing attention scores

To visualize attention scores for GraphiT trained on Mutagenicity, run:

cd experiments
python visu_attention.py --idx-sample 10

To visualize Nitrothiopheneamide-methylbenzene, choose 10 as sample index. To visualize Aminofluoranthene, choose 2003 as sample index. If you want to test for other samples (i.e, other indexes), make sure that the model correctly predicts mutagenicity (class 0) for this sample.

Citation

To cite GraphiT, please use the following Bibtex snippet:

@misc{mialon2021graphit,
      title={GraphiT: Encoding Graph Structure in Transformers}, 
      author={Gr\'egoire Mialon and Dexiong Chen and Margot Selosse and Julien Mairal},
      year={2021},
      eprint={2106.05667},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Inria Thoth
A joint team of Inria and Laboratoire Jean Kuntzmann, we design models capable of representing visual information at scale from minimal supervision.
Inria Thoth
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022