Internship Assessment Task for BaggageAI.

Overview

BaggageAI Internship Task

Problem Statement:

  • You are given two sets of images:- background and threat objects. Background images are the background x-ray images of baggage that gets generated after passing through a X-ray machine at airport. Threat images are the x-ray images of threats that are prohibited at airport while travelling.

  • Your task is to cut the threat objects, scale it down, rotate with 45 degree and paste it into the background images using image processing techniques in python.

  • Threat objects should be translucent, means it should not look like that it is cut pasted. It should look like that the threat was already there in the background images. Translucent means the threat objects should have shades of background where it is pasted.

  • Threat should not go outside the boundary of the baggage. ** difficult **

  • If there is any background of threat objects, then it should not be cut pasted into the background images, which means while cutting the threat objects, the boundary of a threat object should be tight-bound.

Solution:

Libraries Used :

  • OpenCV
  • numpy
  • glob
  • os
  • matplotlib
  • itertools

Methodology

To start with, we read the threat images, background images using the read_images function. For each threat image, it is first converted to grayscale and then dilated with 5x5 matrix of ones with iteration 2. Thi sis done to smooth out the image since the bright area around the threat image gets dilated around the background. Next, we create a mask for the threat object using a threshold value for white and the cv2 function inRange(). Then, the threat image is cropped to a square using a threshold value using the form_square() function. The images are padded dynamically so that when the threat is rotated 45 degrees, the whole threat image is covered and nothing is cut out. Loop through the background images and find the coordinates of the centre of the largest contour found in the background image using get_xy() function. Next, we fix the threat image according to the x, y position in background image. Finally we lace the threat in the background image using the place_threat() function.

The saved images are stored in the output folder for future reference.

Documentation:

  1. read_images(path): This function reads the .jpg files from a specific location and returns a list of images as numpy array and the number of images read.
  2. form_square(image): This function takes in a image(threat, with the background set to black using the inRange() OpenCV function) and finds the left, right, top, and bottom of the threat object, therby removing the extra background. NOTE: The threat object is not guaranteed to be a square. So this function also checks the image for the height and width of the cropped threat image and pad black portion in top-buttom of left-right making it a square image.
  3. pad_image(image): This function calculates the diagonal length of the image and set the height and width of the image equal to diagonal length.
  4. get_xy(background): This function craeates a binary image of the baggage using inRange() function and then inverts it. Next it finds the contours in the binary image and then the contour with maximum area is selected and the center of the countour is found using moments().
  5. place_threat(background, threat, x=0, y=0): This function places the threat image in the background image in (x, y) location on the background. Defaults to x=0 and y=0.
Owner
Arya Shah
Computer Science Junior with Honors in Business Systems | Software Development Engineering | Machine Learning |
Arya Shah
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022