Internship Assessment Task for BaggageAI.

Overview

BaggageAI Internship Task

Problem Statement:

  • You are given two sets of images:- background and threat objects. Background images are the background x-ray images of baggage that gets generated after passing through a X-ray machine at airport. Threat images are the x-ray images of threats that are prohibited at airport while travelling.

  • Your task is to cut the threat objects, scale it down, rotate with 45 degree and paste it into the background images using image processing techniques in python.

  • Threat objects should be translucent, means it should not look like that it is cut pasted. It should look like that the threat was already there in the background images. Translucent means the threat objects should have shades of background where it is pasted.

  • Threat should not go outside the boundary of the baggage. ** difficult **

  • If there is any background of threat objects, then it should not be cut pasted into the background images, which means while cutting the threat objects, the boundary of a threat object should be tight-bound.

Solution:

Libraries Used :

  • OpenCV
  • numpy
  • glob
  • os
  • matplotlib
  • itertools

Methodology

To start with, we read the threat images, background images using the read_images function. For each threat image, it is first converted to grayscale and then dilated with 5x5 matrix of ones with iteration 2. Thi sis done to smooth out the image since the bright area around the threat image gets dilated around the background. Next, we create a mask for the threat object using a threshold value for white and the cv2 function inRange(). Then, the threat image is cropped to a square using a threshold value using the form_square() function. The images are padded dynamically so that when the threat is rotated 45 degrees, the whole threat image is covered and nothing is cut out. Loop through the background images and find the coordinates of the centre of the largest contour found in the background image using get_xy() function. Next, we fix the threat image according to the x, y position in background image. Finally we lace the threat in the background image using the place_threat() function.

The saved images are stored in the output folder for future reference.

Documentation:

  1. read_images(path): This function reads the .jpg files from a specific location and returns a list of images as numpy array and the number of images read.
  2. form_square(image): This function takes in a image(threat, with the background set to black using the inRange() OpenCV function) and finds the left, right, top, and bottom of the threat object, therby removing the extra background. NOTE: The threat object is not guaranteed to be a square. So this function also checks the image for the height and width of the cropped threat image and pad black portion in top-buttom of left-right making it a square image.
  3. pad_image(image): This function calculates the diagonal length of the image and set the height and width of the image equal to diagonal length.
  4. get_xy(background): This function craeates a binary image of the baggage using inRange() function and then inverts it. Next it finds the contours in the binary image and then the contour with maximum area is selected and the center of the countour is found using moments().
  5. place_threat(background, threat, x=0, y=0): This function places the threat image in the background image in (x, y) location on the background. Defaults to x=0 and y=0.
Owner
Arya Shah
Computer Science Junior with Honors in Business Systems | Software Development Engineering | Machine Learning |
Arya Shah
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022