Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Overview

Logo

Türkiye Mobese Görüntü Takip

Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi

Multiple Object Tracking System in Turkish Mobese with OPENCV and Yolo
Explore the docs » Projeyi keşfet

Table of Contents / İçerik Bölümü
  1. About the Project / Proje Hakkında
  2. Getting Started / Başlangıç
  3. Usage / Kullanım
  4. Roadmap / Yol Haritası
  5. Contributing / Katkı
  6. License / Lisans

If you are having any os compatiblity issue, let me know. I will try to fix as soon as possible so let's explore the docs.

Herhangi bir işletim sistemi uyumsuzluğu varsa, bana bildirin. En kısa sürede düzeltmeye çalışacağım, hadi dökümanı inceleyelim.

About the Project / Proje Hakkında

Currently this project have 171 cameras. | Projeye yüklü 171 canlı mobese görüntüsü vardır.

İstanbul > 44 Canlı Yayın          |   İstanbul > 44 Live CCTV Footage
İzmir > 76 Canlı Yayın             |   İzmir > 76 Live CCTV Footage
Tekirdag > 1 Canlı Yayın           |   Tekirdag > 1 Live CCTV Footage
Konya > 32 Canlı Yayın             |   Konya > 32 Live CCTV Footage
Ordu > 21 Canlı Yayın              |   Ordu > 21 Live CCTV Footage

This project implements Turkish Mobese CCTV footages detection classifier using pretrained yolov4-tiny models. If you trust your computer performance you can download yolov4 models too. The yolov4 models are taken from the official yolov4 paper which was released in April 2020 and the yolov4 implementation is from darknet.

Bu proje, önceden eğitilmiş yolov4-tiny modellerini kullanarak Türk Mobese Canlı CCTV görüntülerine algılama sınıflandırıcısını uygular. Bilgisayarınızın performansına güveniyorsanız yolov4 modellerinide indirebilirsiniz. Yolov4 modelleri, Nisan 2020'de yayınlanan resmi yolov4 belgesinden alınmıştır ve Yolov4 uygulaması darknet'tendir.

Built With / Kullanılanlar

Getting Started / Başlangıç

To get a local copy up and running follow these simple steps.

Kendi bilgisayarınızda çalıştırmak için bu basit adımları izleyin.

Installation / Kurulum

  1. Clone the repo | Projeyi indir.
    git clone https://github.com/samet-g/mobese.git
  2. Install Python packages | Gerekli Python paketlerini yükle.
    pip3 install -r requirements.txt

Usage / Kullanım

  • Run with Python or Download the .exe file.
  • Python kullanarak çalıştır veya .exe dosyasını indir
python3 main.py | just run .exe file

Roadmap / Yol Haritası

See the open issues for a list of proposed features
It should be good use cctv cameras in city with Shodan API or make GUI.

Sorunlar için açık sorunları kontrol edin.
Shodan API ile esnaf güvenlik kamerası kullanmak veya GUI yapmak iyi olur.

Contributing / Katkı

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated especially Roadmap / Yol Haritası check this to-do list.

Katkılar, açık kaynak topluluğu için büyük nimettir özellikle Roadmap / Yol Haritası kısmındaki yapılacak-listesini kontrol edin.

  1. Fork the Project | Projeyi forkla.
  2. Create your Feature Branch | Katkıda Bulun
    git checkout -b feature/YeniOzellik
  3. Commit your Changes | Değişiklikleri Commitle
    git commit -m 'Add some YeniOzellik'
  4. Push to the Branch | Değişikliğini Yolla
    git push origin feature/YeniOzellik
  5. Open a Pull Request | Pull Request Aç

License / Lisans

Distributed under the GNU License.
See LICENSE for more information.

GNU Lisansı altında dağıtılmaktadır.
Daha fazla bilgi için LICENSE bölümüne bakın.

Comments
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Denial of Service (DoS)

    opened by samet-g 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Denial of Service (DoS)

    opened by samet-g 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Denial of Service (DoS)

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Denial of Service (DoS)

    opened by samet-g 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
Releases(v1.0.0)
Owner
cybersec researcher and python dev.
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022