MTCNN face detection implementation for TensorFlow, as a PIP package.

Overview

MTCNN

https://travis-ci.org/ipazc/mtcnn.svg?branch=master

Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN from David Sandberg (FaceNet's MTCNN) in Facenet. It is based on the paper Zhang, K et al. (2016) [ZHANG2016].

https://github.com/ipazc/mtcnn/raw/master/result.jpg

INSTALLATION

Currently it is only supported Python3.4 onwards. It can be installed through pip:

$ pip install mtcnn

This implementation requires OpenCV>=4.1 and Keras>=2.0.0 (any Tensorflow supported by Keras will be supported by this MTCNN package). If this is the first time you use tensorflow, you will probably need to install it in your system:

$ pip install tensorflow

or with conda

$ conda install tensorflow

Note that tensorflow-gpu version can be used instead if a GPU device is available on the system, which will speedup the results.

USAGE

The following example illustrates the ease of use of this package:

>>> from mtcnn import MTCNN
>>> import cv2
>>>
>>> img = cv2.cvtColor(cv2.imread("ivan.jpg"), cv2.COLOR_BGR2RGB)
>>> detector = MTCNN()
>>> detector.detect_faces(img)
[
    {
        'box': [277, 90, 48, 63],
        'keypoints':
        {
            'nose': (303, 131),
            'mouth_right': (313, 141),
            'right_eye': (314, 114),
            'left_eye': (291, 117),
            'mouth_left': (296, 143)
        },
        'confidence': 0.99851983785629272
    }
]

The detector returns a list of JSON objects. Each JSON object contains three main keys: 'box', 'confidence' and 'keypoints':

  • The bounding box is formatted as [x, y, width, height] under the key 'box'.
  • The confidence is the probability for a bounding box to be matching a face.
  • The keypoints are formatted into a JSON object with the keys 'left_eye', 'right_eye', 'nose', 'mouth_left', 'mouth_right'. Each keypoint is identified by a pixel position (x, y).

Another good example of usage can be found in the file "example.py." located in the root of this repository. Also, you can run the Jupyter Notebook "example.ipynb" for another example of usage.

BENCHMARK

The following tables shows the benchmark of this mtcnn implementation running on an Intel i7-3612QM CPU @ 2.10GHz, with a CPU-based Tensorflow 1.4.1.

  • Pictures containing a single frontal face:
Image size Total pixels Process time FPS
460x259 119,140 0.118 seconds 8.5
561x561 314,721 0.227 seconds 4.5
667x1000 667,000 0.456 seconds 2.2
1920x1200 2,304,000 1.093 seconds 0.9
4799x3599 17,271,601 8.798 seconds 0.1
  • Pictures containing 10 frontal faces:
Image size Total pixels Process time FPS
474x224 106,176 0.185 seconds 5.4
736x348 256,128 0.290 seconds 3.4
2100x994 2,087,400 1.286 seconds 0.7

MODEL

By default the MTCNN bundles a face detection weights model.

The model is adapted from the Facenet's MTCNN implementation, merged in a single file located inside the folder 'data' relative to the module's path. It can be overriden by injecting it into the MTCNN() constructor during instantiation.

The model must be numpy-based containing the 3 main keys "pnet", "rnet" and "onet", having each of them the weights of each of the layers of the network.

For more reference about the network definition, take a close look at the paper from Zhang et al. (2016) [ZHANG2016].

LICENSE

MIT License.

REFERENCE

[ZHANG2016] (1, 2) Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):1499–1503.
Owner
Iván de Paz Centeno
Lead Data Scientist, R&D Engineer at Smarkia.
Iván de Paz Centeno
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)

代码地址: https://github.com/Sharpiless/yolov5-knowledge-distillation 教师模型: python train.py --weights weights/yolov5m.pt \ --cfg models/yolov5m.ya

52 Dec 04, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022