Behavioral "black-box" testing for recommender systems

Overview

RecList

Documentation Status Contributors License Downloads

RecList

Overview

RecList is an open source library providing behavioral, "black-box" testing for recommender systems. Inspired by the pioneering work of Ribeiro et al. 2020 in NLP, we introduce a general plug-and-play procedure to scale up behavioral testing, with an easy-to-extend interface for custom use cases.

RecList ships with some popular datasets and ready-made behavioral tests: check the paper for more details on the relevant literature and the philosophical motivations behind the project.

If you are not familiar with the library, we suggest first taking our small tour to get acquainted with the main abstractions through ready-made models and public datasets.

Quick Links

  • Our paper, with in-depth analysis, detailed use cases and scholarly references.
  • A colab notebook (WIP), showing how to train a cart recommender model from scratch and use the library to test it.
  • Our blog post (forthcoming), with examples and practical tips.

Project updates

Nov. 2021: the library is currently in alpha (i.e. enough working code to finish the paper and tinker with it). We welcome early feedback, but please be advised that the package may change substantially in the upcoming months ("If you're not embarrassed by the first version, you've launched too late").

As the project is in active development, come back often for updates.

Summary

This doc is structured as follows:

Quick Start

If you want to see RecList in action, clone the repository, create and activate a virtual env, and install the required packages from root. If you prefer to experiment in an interactive, no-installation-required fashion, try out our colab notebook.

Sample scripts are divided by use-cases: similar items, complementary items or session-based recommendations. When executing one, a suitable public dataset will be downloaded, and a baseline ML model trained: finally, the script will run a pre-made suite of behavioral tests to show typical results.

git clone https://github.com/jacopotagliabue/reclist
cd reclist
python3 -m venv venv
source venv/bin/activate
pip install -e .
python examples/coveo_complementary_rec.py

Running your model on one of the supported dataset, leveraging the pre-made tests, is as easy as implementing a simple interface, RecModel.

Once you've run successfully the sample script, take the guided tour below to learn more about the abstractions and the out-of-the-box capabilities of RecList.

A Guided Tour

An instance of RecList represents a suite of tests for recommender systems: given a dataset (more appropriately, an instance of RecDataset) and a model (an instance of RecModel), it will run the specified tests on the target dataset, using the supplied model.

For example, the following code instantiates a pre-made suite of tests that contains sensible defaults for a cart recommendation use case:

rec_list = CoveoCartRecList(
    model=model,
    dataset=coveo_dataset
)
# invoke rec_list to run tests
rec_list(verbose=True)

Our library pre-packages standard recSys KPIs and important behavioral tests, divided by use cases, but it is built with extensibility in mind: you can re-use tests in new suites, or you can write new domain-specific suites and tests.

Any suite must inherit the RecList interface, and then declare with Pytonic decorators its tests: in this case, the test re-uses a standard function:

class MyRecList(RecList):

    @rec_test(test_type='stats')
    def basic_stats(self):
        """
        Basic statistics on training, test and prediction data
        """
        from reclist.metrics.standard_metrics import statistics
        return statistics(self._x_train,
            self._y_train,
            self._x_test,
            self._y_test,
            self._y_preds)

Any model can be tested, as long as its predictions are wrapped in a RecModel. This allows for pure "black-box" testings, a SaaS provider can be tested just by wrapping the proper API call in the method:

class MyCartModel(RecModel):

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def predict(self, prediction_input: list, *args, **kwargs):
        """
        Implement the abstract method, accepting a list of lists, each list being
        the content of a cart: the predictions returned by the model are the top K
        items suggested to complete the cart.
        """

        return

While many standard KPIs are available in the package, the philosophy behind RecList is that metrics like Hit Rate provide only a partial picture of the expected behavior of recommenders in the wild: two models with very similar accuracy can have very different behavior on, say, the long-tail, or model A can be better than model B overall, but at the expense of providing disastrous performance on a set of inputs that are particularly important in production.

RecList recognizes that outside of academic benchmarks, some mistakes are worse than others, and not all inputs are created equal: when possible, it tries to operationalize through scalable code behavioral insights for debugging and error analysis; it also provides extensible abstractions when domain knowledge and custom logic are needed.

Once you run a suite of tests, results are dumped automatically and versioned in a local folder, structured as follows (name of the suite, name of the model, run timestamp):

.reclist/
  myList/
    myModel/
      1637357392/
      1637357404/

We provide a simple (and very WIP) UI to easily compare runs and models. After you run two times one of the example scripts, you can do:

cd app
python app.py

to start a local web app that lets you explore test results:

https://github.com/jacopotagliabue/reclist/blob/main/images/explorer.png

If you select more than model, the app will automatically build comparison tables:

https://github.com/jacopotagliabue/reclist/blob/main/images/comparison.png

If you start using RecList as part of your standard testings - either for research or production purposes - you can use the JSON report for machine-to-machine communication with downstream system (e.g. you may want to automatically fail the model pipeline if certain behavioral tests are not passed).

Capabilities

RecList provides a dataset and model agnostic framework to scale up behavioral tests. As long as the proper abstractions are implemented, all the out-of-the-box components can be re-used. For example:

  • you can use a public dataset provided by RecList to train your new cart recommender model, and then use the RecTests we provide for that use case;
  • you can use some baseline model on your custom dataset, to establish a baseline for your project;
  • you can use a custom model, on a private dataset and define from scratch a new suite of tests, mixing existing methods and domain-specific tests.

We list below what we currently support out-of-the-box, with particular focus on datasets and tests, as the models we provide are convenient baselines, but they are not meant to be SOTA research models.

Datasets

RecList features convenient wrappers around popular datasets, to help test models over known benchmarks in a standardized way.

Behavioral Tests

Coming soon!

Roadmap

To do:

  • the app is just a stub: improve the report "contract" and extend the app capabilities, possibly including it in the library itself;
  • continue adding default RecTests by use cases, and test them on public datasets;
  • improving our test suites and refactor some abstractions;
  • adding Colab tutorials, extensive documentation and a blog-like write-up to explain the basic usage.

We maintain a small Trello board on the project which we plan on sharing with the community: more details coming soon!

Contributing

We will update this repo with some guidelines for contributions as soon as the codebase becomes more stable. Check back often for updates!

Acknowledgments

The main contributors are:

If you have questions or feedback, please reach out to: jacopo dot tagliabue at tooso dot ai.

License and Citation

All the code is released under an open MIT license. If you found RecList useful, or you are using it to benchmark/debug your model, please cite our pre-print (forhtcoming):

@inproceedings{Chia2021BeyondNB,
  title={Beyond NDCG: behavioral testing of recommender systems with RecList},
  author={Patrick John Chia and Jacopo Tagliabue and Federico Bianchi and Chloe He and Brian Ko},
  year={2021}
}

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Owner
Jacopo Tagliabue
I failed the Turing Test once, but that was many friends ago.
Jacopo Tagliabue
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Mohammed Hussien 7 Nov 11, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022