MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Related tags

Deep Learningmodals
Overview

Update (20 Jan 2020): MODALS on text data is avialable

MODALS

MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Table of Contents

  1. Introduction
  2. Getting Started
  3. Run Search
  4. Run Training
  5. Citation

Introduction

MODALS is a framework to apply automated data augmentation to augment data for any modality in a generic way. It exploits automated data augmentation to fine-tune four universal data transformation operations in the latent space to adapt the transform to data of different modalities.

This repository contains code for the work "MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space" (https://openreview.net/pdf?id=XjYgR6gbCEc) implemented using the PyTorch library. It includes searching and training of the SST2 and TREC6 datasets.

Getting Started

Code supports Python 3.

Install requirements

pip install -r requirements.txt

Setting up directory path

In modals/setup.py, specify the dataset path for DATA_DIR and the path to the directory that contains the glove embeddings for EMB_DIR.

Run MODALS search

Script to search for the augmentation policy for SST2 and TREC6 datasets is located in scripts/search.sh. Pass the dataset name as the arguement to call the script.

For example, to search for the augmentation policy for SST2 dataset:

bash scripts/search.sh sst2

The training log and candidate policies of the search will be output to the ./ray_experiments directory.

Run MODALS training

Two searched policy is included in the ./schedule directory. The script to apply the searched policy for training SST2 and TREC6 is located in scripts/train.sh. Pass the dataset name as the arguement to call the script.

bash scripts/train.sh sst2

Citation

If you use MODALS in your research, please cite:

@inproceedings{cheung2021modals,
  title     =  {{\{}MODALS{\}}: Modality-agnostic Automated Data Augmentation in the Latent Space},
  author    =  {Tsz-Him Cheung and Dit-Yan Yeung},
  booktitle =  {International Conference on Learning Representations},
  year      =  {2021},
  url       =  {https://openreview.net/forum?id=XjYgR6gbCEc}
}
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022