A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

Overview

AnimeGAN

A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

Randomly Generated Images

The images are generated from a DCGAN model trained on 143,000 anime character faces for 100 epochs.

fake_sample_1

Image Interpolation

Manipulating latent codes, enables the transition from images in the first row to the last row.

transition

Original Images

The images are not clean, some outliers can be observed, which degrades the quality of the generated images.

real_sample

Usage

To run the experiment,

$ python main.py --dataRoot path_to_dataset/ 

The pretrained model for DCGAN are also in this repo, play it inside the jupyter notebook.

anime-faces Dataset

Anime-style images of 126 tags are collected from danbooru.donmai.us using the crawler tool gallery-dl. The images are then processed by a anime face detector python-animeface. The resulting dataset contains ~143,000 anime faces. Note that some of the tags may no longer meaningful after cropping, i.e. the cropped face images under 'uniform' tag may not contain visible parts of uniforms.

How to construct the dataset from scratch ?

Prequisites: gallery-dl, python-animeface

  1. Download anime-style images

    # download 1000 images under the tag "misaka_mikoto"
    gallery-dl --images 1000 "https://danbooru.donmai.us/posts?tags=misaka_mikoto"
    
    # in a multi-processing manner
    cat tags.txt | \
    xargs -n 1 -P 12 -I 'tag' \ 
    bash -c ' gallery-dl --images 1000 "https://danbooru.donmai.us/posts?tags=$tag" '
  2. Extract faces from the downloaded images

    import animeface
    from PIL import Image
    
    im = Image.open('images/anime_image_misaka_mikoto.png')
    faces = animeface.detect(im)
    x,y,w,h = faces[0].face.pos
    im = im.crop((x,y,x+w,y+h))
    im.show() # display

I've cleaned the original dataset, the new version of the dataset has 115085 images in 126 tags. You can access the images from:

Non-commercial use please.

Things I've learned

  1. GANs are really hard to train.
  2. DCGAN generally works well, simply add fully-connected layers causes problems.
  3. In my cases, more layers for G yields better images, in the sense that G should be more powerful than D.
  4. Add noise to D's inputs and labels helps stablize training.
  5. Use differnet input and generate resolution (64x64 vs 96x96), there seems no obvious difference during training, the generated images are also very similar.
  6. Binray Noise as G's input amazingly works, but the images are not as good as those with Gussian Noise, idea credit to @cwhy ['Binary Noise' here I mean a sequence of {-1,1} generated by bernoulli distribution at p=0.5 ]

I did not carefully verify them, if you are looking for some general GAN tips, see @soumith's ganhacks

Others

  1. This project is heavily influenced by chainer-DCGAN and IllustrationGAN, the codes are mostly borrowed from PyTorch DCGAN example, thanks the authors for the clean codes.
  2. Dependencies: pytorch, torchvision
  3. This is a toy project for me to learn PyTorch and GANs, most importantly, for fun! :) Any feedback is welcome.

@jayleicn

Comments
  • KeyError: 'module name can\'t contain

    KeyError: 'module name can\'t contain "."'

    The classes in module.py contains some nn.Module layers whose names contains some'.' in it, so I got error messages like the title, so how could I play it??

    opened by bolin12 2
  • no image under some tags

    no image under some tags

    Hi, The dataset from google drive contains 126 tags. However, some folders are emtpy:

    1girl apron blush collarbone hairclip honma_meiko japanese_clothes monochrome necktie nishizumi_miho purple_eyes scarf school_uniform sunglasses

    Is this normal? Thanks

    opened by samrere 1
  • set_sizes_contiguous is not allowed on a Tensor created from .data or .detach().

    set_sizes_contiguous is not allowed on a Tensor created from .data or .detach().

    input.data.resize_(real_cpu.size()).copy_(real_cpu) RuntimeError: set_sizes_contiguous is not allowed on a Tensor created from .data or .detach(). If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset) without autograd tracking the change, remove the .data / .detach() call and wrap the change in a with torch.no_grad(): block. For example, change: x.data.set_(y) to: with torch.no_grad(): x.set_(y)

    opened by athulvingt 0
  • can not run

    can not run

    Traceback (most recent call last): File "main.py", line 6, in import torch File "/Library/Python/2.7/site-packages/torch/init.py", line 81, in from torch._C import * RuntimeError: module compiled against API version 0xa but this version of numpy is 0x9

    opened by xtzero 0
  • How do I start with my own model

    How do I start with my own model

    I would like to know how I can use this image generation to generate my own images from a self made model?

    Where can I read upon on this. I find no concrete info on making the models.

    opened by quintendewilde 0
Owner
Jie Lei 雷杰
UNC CS PhD student, vision+language.
Jie Lei 雷杰
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022