This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Overview

Locus

This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

More information: https://research.csiro.au/robotics/locus-pr/

Paper Pre-print: https://arxiv.org/abs/2011.14497

Method overview.

Locus is a global descriptor for large-scale place recognition using sequential 3D LiDAR point clouds. It encodes topological relationships and temporal consistency of scene components to obtain a discriminative and view-point invariant scene representation.

Usage

Set up environment

This project has been tested on Ubuntu 18.04 (with Open3D 0.11, tensorflow 1.8.0, pcl 1.8.1 and python-pcl 0.3.0). Set up the requirments as follows:

  • Create conda environment with open3d and tensorflow-1.8 with python 3.6:
conda create --name locus_env python=3.6
conda activate locus_env
pip install -r requirements.txt
  • Set up python-pcl. See utils/setup_python_pcl.txt. For further instructions, see here.
  • Segment feature extraction uses the pre-trained model from ethz-asl/segmap. Download and copy the relevant content in segmap_data into ~/.segmap/:
./utils/get_segmap_data.bash

Descriptor Generation

Segment and generate Locus descriptor for each scan in a selected sequence (e.g., KITTI sequence 06):

python main.py --seq '06'

The following flags can be used with main.py:

  • --seq: KITTI dataset sequence number.
  • --aug_type: Scan augmentation type (optional for robustness tests).
  • --aug_param: Parameter corresponding to above augmentation.

Evaluation

Sequence-wise place-recognition using extracted descriptors:

python ./evaluation/place_recognition.py  --seq  '06' 

Evaluation of place-recognition performance using Precision-Recall curves (multiple sequences):

python ./evaluation/pr_curve.py 

Additional scripts

Robustness tests:

Code of the robustness tests carried out in section V.C in paper. Extract Locus descriptors from scans of select augmentation:

python main.py --seq '06' --aug_type 'rot' --aug_param 180 # Rotate about z-axis by random angle between 0-180 degrees. 
python main.py --seq '06' --aug_type 'occ' --aug_param 90 # Occlude sector of 90 degrees about random heading. 

Evaluation is done as before. For vizualization, set config.yml->segmentation->visualize to True.

Testing individual modules:

python ./segmentation/extract_segments.py # Extract and save Euclidean segments (S).
python ./segmentation/extract_segment_features.py # Extract and save SegMap-CNN features (Fa) for given S.
python ./descriptor_generation/spatial_pooling.py # Generate and save spatial segment features for given S and Fa.
python ./descriptor_generation/temporal_pooling.py # Generate and save temporal segment features for given S and Fa.
python ./descriptor_generation/locus_descriptor.py # Generate and save Locus global descriptor using above.

Citation

If you find this work usefull in your research, please consider citing:

@inproceedings{vid2021locus,
  title={Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling},
  author={Vidanapathirana, Kavisha and Moghadam, Peyman and Harwood, Ben and Zhao, Muming and Sridharan, Sridha and Fookes, Clinton},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  year={2021},
  eprint={arXiv preprint arXiv:2011.14497}
}

Acknowledgment

Functions from 3rd party have been acknowledged at the respective function definitions or readme files. This project was mainly inspired by the following: ethz-asl/segmap and irapkaist/scancontext.

Contact

For questions/feedback,

Owner
Robotics and Autonomous Systems Group
CSIRO's Robotics and Autonomous Systems Group
Robotics and Autonomous Systems Group
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022