Official Pytorch Code for the paper TransWeather

Overview

TransWeather

Official Code for the paper TransWeather, Arxiv Tech Report 2021

Paper | Website

About this repo:

This repo hosts the implentation code, pre-trained weights, and dataset preparation details for the paper "TransWeather". We also provide code for a strong transformer baseline for weather removal tasks.

Introduction

Removing adverse weather conditions like rain, fog, and snow from images is an important problem in many applications. Most methods proposed in the literature have been designed to deal with just removing one type of degradation. Recently, a CNN-based method using neural architecture search (All-in-One) was proposed to remove all the weather conditions at once. However, it has a large number of parameters as it uses multiple encoders to cater to each weather removal task and still has scope for improvement in its performance. In this work, we focus on developing an efficient solution for the all adverse weather removal problem. To this end, we propose TransWeather, a transformer-based end-to-end model with just a single encoder and a decoder that can restore an image degraded by any weather condition. Specifically, we utilize a novel transformer encoder using intra-patch transformer blocks to enhance attention inside the patches to effectively remove smaller weather degradations. We also introduce a transformer decoder with learnable weather type embeddings to adjust to the weather degradation at hand. TransWeather achieves significant improvements across multiple test datasets over both All-in-One network as well as methods fine-tuned for specific tasks. In particular, TransWeather pushes the current state-of-the-art by +6.34 PSNR on the Test1 (rain+fog) dataset, +4.93 PSNR on the SnowTest100K-L dataset and +3.11 PSNR on the RainDrop test dataset. TransWeather is also validated on real world test images and found to be more effective than previous methods.

Using the code:

The code is stable while using Python 3.6.13, CUDA >=10.1

  • Clone this repository:
git clone https://github.com/jeya-maria-jose/TransWeather
cd TransWeather

To install all the dependencies using conda:

conda env create -f environment.yml
conda activate transweather

If you prefer pip, install following versions:

timm==0.3.2
mmcv-full==1.2.7
torch==1.7.1
torchvision==0.8.2
opencv-python==4.5.1.48

Datasets:

Train Data:

TransWeather is trained on a combination of images sampled from Outdoor-Rain, Snow100K, and Raindrop datasets (similar to All-in-One (CVPR 2020)), dubbed as "All-Weather", containing 18069 images. It can be downloaded from this link.

Test Data:

RainDrop Test : Link (Note that Test A is used for quantitative evaluation across all papers in the community, Test B is used for additional qualitative analysis)

Snow100K Test : Link (We use the Snow100K-L distribution for testing)

Test1 (validation set of "Outdoor-Rain") : Link

Real World Images : Link

Dataset format:

Download the datasets and arrange them in the following format. T

    TransWeather
    ├── data 
    |   ├── train # Training  
    |   |   ├── 
   
       
    |   |   |   ├── input         # rain images 
    |   |   |   └── gt            # clean images
    |   |   └── dataset_filename.txt
    |   └── test  # Testing         
    |   |   ├── 
    
               
    |   |   |   ├── input         # rain images 
    |   |   |   └── gt            # clean images
    |   |   └── dataset_filename.txt

    
   

Text Files:

Link

Pre-Trained Model

TransWeather Weights - Link

Place the folder in the root directory.

Evaluation Code:

To run the evaluation for specific test datasets, run the following commands:

python test_snow100k.py -exp_name TransWeather_weights
python test_test1.py -exp_name TransWeather_weights
python test_raindropa.py -exp_name TransWeather_weights

These scripts will calculate the performance metrics as well as save the predictions in the results folder.

Training the network:

To train the network on All-weather dataset, run the following command:

python train.py  -train_batch_size 32 -exp_name Transweather -epoch_start 0 -num_epochs 250

Extensions:

Note that Transweather is built to solve all adverse weather problem with a single model. We observe that, additionally TransWeather can be easilty modified (removing the transformer decoder) to just focus on a individual weather restoration task. To train just the Transweather-encoder on other datasets (like Rain-800), organize the dataset similar to all-weather and run the following command:

python train-individual.py  -train_batch_size 32 -exp_name Transweather-finetune -epoch_start 0 -num_epochs 250

Change train-individual.py with the necesarry details of the data to be trained on. Note that the network used there is a sub-section of our original Transweather architecture without the weather queries.

Acknowledgements:

This code-base uses certain code-blocks and helper functions from Syn2Real, Segformer, and ViT.

Citation:

Owner
Jeya Maria Jose
PhD Student at Johns Hopkins University.
Jeya Maria Jose
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022