Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Overview

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021)

This repository contains the code for reproducing the paper: Training GANs with Stronger Augmentations via Contrastive Discriminator by Jongheon Jeong and Jinwoo Shin.

TL;DR: We propose a novel discriminator of GAN showing that contrastive representation learning, e.g., SimCLR, and GAN can benefit each other when they are jointly trained.

Demo

Qualitative comparison of unconditional generations from GANs on high-resoultion, yet limited-sized datasets of AFHQ-Dog (4739 samples), AFHQ-Cat (5153 samples) and AFHQ-Wild (4738 samples) datasets.

Overview

Teaser

An overview of Contrastive Discriminator (ContraD). The representation of ContraD is not learned from the discriminator loss (L_dis), but from two contrastive losses (L+_con and L-_con), each is for the real and fake samples, respectively. The actual discriminator that minimizes L_dis is simply a 2-layer MLP head upon the learned contrastive representation.

Dependencies

Currently, the following environment has been confirmed to run the code:

  • python >= 3.6
  • pytorch >= 1.6.0 (See https://pytorch.org/ for the detailed installation)
  • tensorflow-gpu == 1.14.0 to run test_tf_inception.py for FID/IS evaluations
  • Other requirements can be found in environment.yml (for conda users) or environment_pip.txt (for pip users)
#### Install dependencies via conda.
# The file also includes `pytorch`, `tensorflow-gpu=1.14`, and `cudatoolkit=10.1`.
# You may have to set the correct version of `cudatoolkit` compatible to your system.
# This command creates a new conda environment named `contrad`.
conda env create -f environment.yml

#### Install dependencies via pip.
# It assumes `pytorch` and `tensorflow-gpu` are already installed in the current environment.
pip install -r environment_pip.txt

Preparing datasets

By default, the code assumes that all the datasets are placed under data/. You can change this path by setting the $DATA_DIR environment variable.

CIFAR-10/100 can be automatically downloaded by running any of the provided training scripts.

CelebA-HQ-128:

  1. Download the CelebA-HQ dataset and extract it under $DATA_DIR.
  2. Run third_party/preprocess_celeba_hq.py to resize and split the 1024x1024 images in $DATA_DIR/CelebAMask-HQ/CelebA-HQ-img:
    python third_party/preprocess_celeba_hq.py
    

AFHQ datasets:

  1. Download the AFHQ dataset and extract it under $DATA_DIR.
  2. One has to reorganize the directories in $DATA_DIR/afhq to make it compatible with torchvision.datasets.ImageFolder. Please refer the detailed file structure provided in below.

The structure of $DATA_DIR should be roughly like as follows:

$DATA_DIR
├── cifar-10-batches-py   # CIFAR-10
├── cifar-100-python      # CIFAR-100
├── CelebAMask-HQ         # CelebA-HQ-128
│   ├── CelebA-128-split  # Resized to 128x128 from `CelebA-HQ-img`
│   │   ├── train
│   │   │   └── images
│   │   │       ├── 0.jpg
│   │   │       └── ...
│   │   └── test
│   ├── CelebA-HQ-img     # Original 1024x1024 images
│   ├── CelebA-HQ-to-CelebA-mapping.txt
│   └── README.txt
└── afhq                  # AFHQ datasets
    ├── cat
    │   ├── train
    │   │   └── images
    │   │       ├── flickr_cat_00xxxx.jpg
    │   │       └── ...
    │   └── val
    ├── dog
    └── wild

Scripts

Training Scripts

We provide training scripts to reproduce the results in train_*.py, as listed in what follows:

File Description
train_gan.py Train a GAN model other than StyleGAN2. DistributedDataParallel supported.
train_stylegan2.py Train a StyleGAN2 model. It additionally implements the details of StyleGAN2 training, e.g., R1 regularization and EMA. DataParallel supported.
train_stylegan2_contraD.py Training script optimized for StyleGAN2 + ContraD. It runs faster especially on high-resolution datasets, e.g., 512x512 AFHQ. DataParallel supported.

The samples below demonstrate how to run each script to train GANs with ContraD. More instructions to reproduce our experiments, e.g., other baselines, can be found in EXPERIMENTS.md. One can modify CUDA_VISIBLE_DEVICES to further specify GPU number(s) to work on.

# SNDCGAN + ContraD on CIFAR-10
CUDA_VISIBLE_DEVICES=0 python train_gan.py configs/gan/cifar10/c10_b512.gin sndcgan \
--mode=contrad --aug=simclr --use_warmup

# StyleGAN2 + ContraD on CIFAR-10 - it is OK to simply use `train_stylegan2.py` even with ContraD
python train_stylegan2.py configs/gan/stylegan2/c10_style64.gin stylegan2 \
--mode=contrad --aug=simclr --lbd_r1=0.1 --no_lazy --halflife_k=1000 --use_warmup

# Nevertheless, StyleGAN2 + ContraD can be trained more efficiently with `train_stylegan2_contraD.py` 
python train_stylegan2_contraD.py configs/gan/stylegan2/afhq_dog_style64.gin stylegan2_512 \
--mode=contrad --aug=simclr_hq --lbd_r1=0.5 --halflife_k=20 --use_warmup \
--evaluate_every=5000 --n_eval_avg=1 --no_gif 

Testing Scripts

  • The script test_gan_sample.py generates and saves random samples from a pre-trained generator model into *.jpg files. For example,

    CUDA_VISIBLE_DEVICES=0 python test_gan_sample.py PATH/TO/G.pt sndcgan --n_samples=10000
    

    will load the generator stored at PATH/TO/G.pt, generate n_samples=10000 samples from it, and save them under PATH/TO/samples_*/.

  • The script test_gan_sample_cddls.py additionally takes the discriminator, and a linear evaluation head obtained from test_lineval.py to perform class-conditional cDDLS. For example,

    CUDA_VISIBLE_DEVICES=0 python test_gan_sample_cddls.py LOGDIR PATH/TO/LINEAR.pth.tar sndcgan
    

    will load G and D stored in LOGDIR, the linear head stored at PATH/TO/LINEAR.pth.tar, and save the generated samples from cDDLS under LOGDIR/samples_cDDLS_*/.

  • The script test_lineval.py performs linear evaluation for a given pre-trained discriminator model stored at model_path:

    CUDA_VISIBLE_DEVICES=0 python test_lineval.py PATH/TO/D.pt sndcgan
    
  • The script test_tf_inception.py computes Fréchet Inception distance (FID) and Inception score (IS) with TensorFlow backend using the original code of FID available at https://github.com/bioinf-jku/TTUR. tensorflow-gpu <= 1.14.0 is required to run this script. It takes a directory of generated samples (e.g., via test_gan_sample.py) and an .npz of pre-computed statistics:

    python test_tf_inception.py PATH/TO/GENERATED/IMAGES/ PATH/TO/STATS.npz --n_imgs=10000 --gpu=0 --verbose
    

    A pre-computed statistics file per dataset can be either found in http://bioinf.jku.at/research/ttur/, or manually computed - you can refer third_party/tf/examples for the sample scripts to this end.

Citation

@inproceedings{jeong2021contrad,
  title={Training {GAN}s with Stronger Augmentations via Contrastive Discriminator},
  author={Jongheon Jeong and Jinwoo Shin},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=eo6U4CAwVmg}
}
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Code for paper Novel View Synthesis via Depth-guided Skip Connections

Novel View Synthesis via Depth-guided Skip Connections Code for paper Novel View Synthesis via Depth-guided Skip Connections @InProceedings{Hou_2021_W

8 Mar 14, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022