The Unsupervised Reinforcement Learning Benchmark (URLB)

Overview

The Unsupervised Reinforcement Learning Benchmark (URLB)

URLB provides a set of leading algorithms for unsupervised reinforcement learning where agents first pre-train without access to extrinsic rewards and then are finetuned to downstream tasks.

Requirements

We assume you have access to a GPU that can run CUDA 10.2 and CUDNN 8. Then, the simplest way to install all required dependencies is to create an anaconda environment by running

conda env create -f conda_env.yml

After the instalation ends you can activate your environment with

conda activate urlb

Implemented Agents

Agent Command Implementation Author(s) Paper
ICM agent=icm Denis paper
ProtoRL agent=proto Denis paper
DIAYN agent=diayn Misha paper
APT(ICM) agent=icm_apt Hao, Kimin paper
APT(Ind) agent=ind_apt Hao, Kimin paper
APS agent=aps Hao, Kimin paper
SMM agent=smm Albert paper
RND agent=rnd Kevin paper
Disagreement agent=disagreement Catherine paper

Available Domains

We support the following domains.

Domain Tasks
walker stand, walk, run, flip
quadruped walk, run, stand, jump
jaco reach_top_left, reach_top_right, reach_bottom_left, reach_bottom_right

Domain observation mode

Each domain supports two observation modes: states and pixels.

Model Command
states obs_type=states
pixels obs_type=pixels

Instructions

Pre-training

To run pre-training use the pretrain.py script

python pretrain.py agent=icm domain=walker

or, if you want to train a skill-based agent, like DIAYN, run:

python pretrain.py agent=diayn domain=walker

This script will produce several agent snapshots after training for 100k, 500k, 1M, and 2M frames. The snapshots will be stored under the following directory:

./pretrained_models/<obs_type>/<domain>/<agent>/

For example:

./pretrained_models/states/walker/icm/

Fine-tuning

Once you have pre-trained your method, you can use the saved snapshots to initialize the DDPG agent and fine-tune it on a downstream task. For example, let's say you have pre-trained ICM, you can fine-tune it on walker_run by running the following command:

python finetune.py pretrained_agent=icm task=walker_run snapshot_ts=1000000 obs_type=states

This will load a snapshot stored in ./pretrained_models/states/walker/icm/snapshot_1000000.pt, initialize DDPG with it (both the actor and critic), and start training on walker_run using the extrinsic reward of the task.

For methods that use skills, include the agent, and the reward_free tag to false.

python finetune.py pretrained_agent=smm task=walker_run snapshot_ts=1000000 obs_type=states agent=smm reward_free=false

Monitoring

Logs are stored in the exp_local folder. To launch tensorboard run:

tensorboard --logdir exp_local

The console output is also available in a form:

| train | F: 6000 | S: 3000 | E: 6 | L: 1000 | R: 5.5177 | FPS: 96.7586 | T: 0:00:42

a training entry decodes as

F  : total number of environment frames
S  : total number of agent steps
E  : total number of episodes
R  : episode return
FPS: training throughput (frames per second)
T  : total training time
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

44 Dec 30, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023