A fast implementation of bss_eval metrics for blind source separation

Overview

fast_bss_eval

Documentation Status black tests

Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ?

Fear no more! fast_bss_eval is here to help you!

fast_bss_eval is a fast implementation of the bss_eval metrics for the evaluation of blind source separation. Our implementation of the bss_eval metrics has the following advantages compared to other existing ones.

  • seamlessly works with both numpy arrays and pytorch tensors
  • very fast
  • can be even faster by using an iterative solver (add use_cg_iter=10 option to the function call)
  • differentiable via pytorch
  • can run on GPU via pytorch

Author

Quick Start

Install

# from pypi
pip install fast-bss-eval

# or from source
git clone https://github.com/fakufaku/fast_bss_eval
cd fast_bss_eval
pip install -e .

Use

Assuming you have multichannel signals for the estmated and reference sources stored in wav format files names my_estimate_file.wav and my_reference_file.wav, respectively, you can quickly evaluate the bss_eval metrics as follows.

from scipy.io import wavfile
import fast_bss_eval

# open the files, we assume the sampling rate is known
# to be the same
fs, ref = wavfile.read("my_reference_file.wav")
_, est = wavfile.read("my_estimate_file.wav")

# compute the metrics
sdr, sir, sar, perm = fast_bss_eval.bss_eval_sources(ref.T, est.T)

Benchmark

This package is significantly faster than other packages that also allow to compute bss_eval metrics such as mir_eval or sigsep/bsseval. We did a benchmark using numpy/torch, single/double precision floating point arithmetic (fp32/fp64), and using either Gaussian elimination or a conjugate gradient descent (solve/CGD10).

Citation

If you use this package in your own research, please cite our paper describing it.

@misc{scheibler_sdr_2021,
  title={SDR --- Medium Rare with Fast Computations},
  author={Robin Scheibler},
  year={2021},
  eprint={2110.06440},
  archivePrefix={arXiv},
  primaryClass={eess.AS}
}

License

2021 (c) Robin Scheibler, LINE Corporation

This code is released under MIT License.

Owner
Robin Scheibler
Engineer. I ❤️ audio, microphone arrays, IoT, Python, and data.
Robin Scheibler
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023