[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Overview

Grounded Situation Recognition with Transformers

Paper | Model Checkpoint

  • This is the official PyTorch implementation of Grounded Situation Recognition with Transformers (BMVC 2021).
  • GSRTR (Grounded Situation Recognition TRansformer) achieves state of the art in all evaluation metrics on the SWiG benchmark.
  • This repository contains instructions, code and model checkpoint.

Overview

Grounded Situation Recognition (GSR) is the task that not only classifies a salient action (verb), but also predicts entities (nouns) associated with semantic roles and their locations in the given image. Inspired by the remarkable success of Transformers in vision tasks, we propose a GSR model based on a Transformer encoder-decoder architecture. The attention mechanism of our model enables accurate verb classification by capturing high-level semantic feature of an image effectively, and allows the model to flexibly deal with the complicated and image-dependent relations between entities for improved noun classification and localization. Our model is the first Transformer architecture for GSR, and achieves the state of the art in every evaluation metric on the SWiG benchmark.

model

GSRTR mainly consists of two components: Transformer Encoder for verb prediction, and Transformer Decoder for grounded noun prediction. For details, please see Grounded Situation Recognition with Transformers by Junhyeong Cho, Youngseok Yoon, Hyeonjun Lee and Suha Kwak.

Environment Setup

We provide instructions for environment setup.

# Clone this repository and navigate into the repository
git clone https://github.com/jhcho99/gsrtr.git    
cd gsrtr                                          

# Create a conda environment, activate the environment and install PyTorch via conda
conda create --name gsrtr python=3.9              
conda activate gsrtr                             
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge 

# Install requirements via pip
pip install -r requirements.txt                   

SWiG Dataset

Annotations are given in JSON format, and annotation files are under "SWiG/SWiG_jsons/" directory. Images can be downloaded here. Please download the images and store them in "SWiG/images_512/" directory.

SWiG_Image In the SWiG dataset, each image is associated with Verb, Frame and Groundings.

A) Verb: each image is paired with a verb. In the annotation file, "verb" denotes the salient action for an image.

B) Frame: a frame denotes the set of semantic roles for a verb. For example, the frame for verb "Catching" denotes the set of semantic roles "Agent", "Caught Item", "Tool" and "Place". In the annotation file, "frames" show the set of semantic roles for a verb, and noun annotations for each role. There are three noun annotations for each role, which are given by three different annotators.

C) Groundings: each grounding is described in [x1, y1, x2, y2] format. In the annotation file, "bb" denotes groundings for roles. Note that nouns can be labeled without groundings, e.g., in the case of occluded objects. When there is no grounding for a role, [-1, -1, -1, -1] is given.

# an example of annotation for an image

"catching_175.jpg": {
    "verb": "catching",
    "height": 512, 
    "width": 910,
    "bb": {"tool": [-1, -1, -1, -1], 
           "caughtitem": [444, 169, 671, 317], 
           "place": [-1, -1, -1, -1], 
           "agent": [270, 112, 909, 389]},
    "frames": [{"tool": "n05282433", "caughtitem": "n02190166", "place": "n03991062", "agent": "n00017222"}, 
               {"tool": "n05302499", "caughtitem": "n02190166", "place": "n03990474", "agent": "n00017222"}, 
               {"tool": "n07655505", "caughtitem": "n13152742", "place": "n00017222", "agent": "n02190166"}]
    }

In imsitu_space.json file, there is additional information for verb and noun.

# an example of additional verb information

"catching": {
    "framenet": "Getting", 
    "abstract": "an AGENT catches a CAUGHTITEM with a TOOL at a PLACE", 
    "def": "capture a sought out item", 
    "order": ["agent", "caughtitem", "tool", "place"], 
    "roles": {"tool": {"framenet": "manner", "def": "The object used to do the catch action"}, 
              "caughtitem": {"framenet": "theme", "def": "The entity being caught"}, 
              "place": {"framenet": "place", "def": "The location where the catch event is happening"}, 
              "agent": {"framenet": "recipient", "def": "The entity doing the catch action"}}
    }
# an example of additional noun information

"n00017222": {
    "gloss": ["plant", "flora", "plant life"], 
    "def": "(botany) a living organism lacking the power of locomotion"
    }

Additional Details

  • All images should be under "SWiG/images_512/" directory.
  • train.json file is for train set.
  • dev.json file is for development set.
  • test.json file is for test set.

Training

To train GSRTR on a single node with 4 gpus for 40 epochs, run:

python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py \
           --backbone resnet50 --batch_size 16 --dataset_file swig --epochs 40 \
           --num_workers 4 --enc_layers 6 --dec_layers 6 --dropout 0.15 --hidden_dim 512 \
           --output_dir gsrtr

To train GSRTR on a Slurm cluster with submitit using 4 TITAN Xp gpus for 40 epochs, run:

python run_with_submitit.py --ngpus 4 --nodes 1 --job_dir gsrtr \
        --backbone resnet50 --batch_size 16 --dataset_file swig --epochs 40 \
        --num_workers 4 --enc_layers 6 --dec_layers 6 --dropout 0.15 --hidden_dim 512 \
        --partition titanxp
  • A single epoch takes about 30 minutes. 40 epoch training takes around 20 hours on a single machine with 4 TITAN Xp gpus.
  • We use AdamW optimizer with learning rate 10-4 (10-5 for backbone), weight decay 10-4 and β = (0.9, 0.999).
  • Random Color Jittering, Random Gray Scaling, Random Scaling and Random Horizontal Flipping are used for augmentation.

Inference

To run an inference on a custom image, run:

python inference.py --image_path inference/filename.jpg \
                    --saved_model gsrtr_checkpoint.pth \
                    --output_dir inference
  • Model checkpoint can be downloaded here.

Here is an example of inference result: inference_result

Acknowledgements

Our code is modified and adapted from these amazing repositories:

Contact

Junhyeong Cho ([email protected])

Citation

If you find our work useful for your research, please cite our paper:

@InProceedings{cho2021gsrtr,
    title={Grounded Situation Recognition with Transformers},
    author={Junhyeong Cho and Youngseok Yoon and Hyeonjun Lee and Suha Kwak},
    booktitle={British Machine Vision Conference (BMVC)},
    year={2021}
}

License

GSRTR is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Owner
Junhyeong Cho
Student at POSTECH | Studied at Stanford, UIUC and UC Berkeley
Junhyeong Cho
第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)第一名;仅采用densenet识别图中文字

OCR 第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)冠军 模型结果 该比赛计算每一个条目的f1score,取所有条目的平均,具体计算方式在这里。这里的计算方式不对一句话里的相同文字重复计算,故f1score比提交的最终结果低: - train val f1score 0

尹畅 441 Dec 22, 2022
Code for the ACL2021 paper "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction"

CSCBLI Code for our ACL Findings 2021 paper, "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction". Require

Jinpeng Zhang 12 Oct 08, 2022
基于openpose和图像分类的手语识别项目

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

20 Dec 15, 2022
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
An interactive document scanner built in Python using OpenCV

The scanner takes a poorly scanned image, finds the corners of the document, applies the perspective transformation to get a top-down view of the document, sharpens the image, and applies an adaptive

Kushal Shingote 1 Feb 12, 2022
CNN+Attention+Seq2Seq

Attention_OCR CNN+Attention+Seq2Seq The model and its tensor transformation are shown in the figure below It is necessary ch_ train and ch_ test the p

Tsukinousag1 2 Jul 14, 2022
Source code of RRPN ---- Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Paper source Arbitrary-Oriented Scene Text Detection via Rotation Proposals https://arxiv.org/abs/1703.01086 News We update RRPN in pytorch 1.0! View

428 Nov 22, 2022
One Metrics Library to Rule Them All!

onemetric Installation Install onemetric from PyPI (recommended): pip install onemetric Install onemetric from the GitHub source: git clone https://gi

Piotr Skalski 49 Jan 03, 2023
A PyTorch implementation of ECCV2018 Paper: TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes A PyTorch implement of TextSnake: A Flexible Representation for Detecting

Prince Wang 417 Dec 12, 2022
Simple SDF mesh generation in Python

Generate 3D meshes based on SDFs (signed distance functions) with a dirt simple Python API.

Michael Fogleman 1.1k Jan 08, 2023
Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera.

Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip location is mapped to RGB images to control the mouse cursor.

Ravi Sharma 71 Dec 20, 2022
Text recognition (optical character recognition) with deep learning methods.

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle

Clova AI Research 3.2k Jan 04, 2023
Um simples projeto para fazer o reconhecimento do captcha usado pelo jogo bombcrypto

CaptchaSolver - LEIA ISSO 😓 Para iniciar o codigo: pip install -r requirements.txt python captcha_solver.py Se você deseja pegar ver o resultado das

Kawanderson 50 Mar 21, 2022
This pyhton script converts a pdf to Image then using tesseract as OCR engine converts Image to Text

Script_Convertir_PDF_IMG_TXT Este script de pyhton convierte un pdf en Imagen luego utilizando tesseract como motor OCR convierte la Imagen a Texto. p

alebogado 1 Jan 27, 2022
The official code for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates".

SpeechDrivesTemplates The official repo for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates". [arxiv

Qian Shenhan 53 Dec 23, 2022
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search

This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of

Zj Li 218 Dec 31, 2022
Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight'

SSTDNet Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight' using pytorch. This code is work for general object detecti

HotaekHan 84 Jan 05, 2022
Controlling Volume by Hand Gestures

This program allows the user to control the volume of their device with specific hand gestures involving their thumb and index finger!

Riddhi Bajaj 1 Nov 11, 2021
Using computer vision method to recognize and calcutate the features of the architecture.

building-feature-recognition In this repository, we accomplished building feature recognition using traditional/dl-assisted computer vision method. Th

4 Aug 11, 2022