A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

Overview

🌟 HNSW + PostgreSQL Indexer

HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework.

It combines the reliability of PostgreSQL with the speed and efficiency of the HNSWlib nearest neighbor library.

It thus provides all the CRUD operations expected of a database system, while also offering fast and reliable vector lookup.

Requires a running PostgreSQL database service. For quick testing, you can run a containerized version locally with:

docker run -e POSTGRES_PASSWORD=123456 -p 127.0.0.1:5432:5432/tcp postgres:13.2

Syncing between PSQL and HNSW

By default, all data is stored in a PSQL database (as defined in the arguments). In order to add data to / build a HNSW index with your data, you need to manually call the /sync endpoint. This iterates through the data you have stored, and adds it to the HNSW index. By default, this is done incrementally, on top of whatever data the HNSW index already has. If you want to completely rebuild the index, use the parameter rebuild, like so:

flow.post(on='/sync', parameters={'rebuild': True})

At start-up time, the data from PSQL is synced into HNSW automatically. You can disable this with:

Flow().add(
    uses='jinahub://HNSWPostgresIndexer',
    uses_with={'startup_sync': False}
)

Automatic background syncing

WARNING: Experimental feature

Optionally, you can enable the option for automatic background syncing of the data into HNSW. This creates a thread in the background of the main operations, that will regularly perform the synchronization. This can be done with the sync_interval constructor argument, like so:

Flow().add(
    uses='jinahub://HNSWPostgresIndexer',
    uses_with={'sync_interval': 5}
)

sync_interval argument accepts an integer that represents the amount of seconds to wait between synchronization attempts. This should be adjusted based on your specific data amounts. For the duration of the background sync, the HNSW index will be locked to avoid invalid state, so searching will be queued. When sync_interval is enabled, the index will also be locked during search mode, so that syncing will be queued.

CRUD operations

You can perform all the usual operations on the respective endpoints

  • /index. Add new data to PostgreSQL
  • /search. Query the HNSW index with your Documents.
  • /update. Update documents in PostgreSQL
  • /delete. Delete documents in PostgreSQL.

Note. This only performs soft-deletion by default. This is done in order to not break the look-up of the document id after doing a search. For a hard delete, add 'soft_delete': False' to parameters. You might also perform a cleanup after a full rebuild of the HNSW index, by calling /cleanup.

Status endpoint

You can also get the information about the status of your data via the /status endpoint. This returns a Document whose tags contain the relevant information. The information can be returned via the following keys:

  • 'psql_docs': number of Documents stored in the PSQL database (includes entries that have been "soft-deleted")
  • 'hnsw_docs': the number of Documents indexed in the HNSW index
  • 'last_sync': the time of the last synchronization of PSQL into HNSW
  • 'pea_id': the shard number

In a sharded environment (parallel>1) you will get one Document from each shard. Each shard will have its own 'hnsw_docs', 'last_sync', 'pea_id', but they will all report the same 'psql_docs' (The PSQL database is available to all your shards). You need to sum the 'hnsw_docs' across these Documents, like so

result = f.post('/status', None, return_results=True)
result_docs = result[0].docs
total_hnsw_docs = sum(d.tags['hnsw_docs'] for d in result_docs)
Comments
  • Changing how /status method returns its values to try and merge with …

    Changing how /status method returns its values to try and merge with …

    …any pre-existing tags from previous executors if any.

    A shot at addressing the issue mentioned in https://github.com/jina-ai/executor-hnsw-postgres/issues/23

    opened by louisconcentricsky 6
  • feat: performance improvements

    feat: performance improvements

    Closes https://github.com/jina-ai/executor-hnsw-postgres/issues/6

    Results before this PR:

    indexing 1000 takes 0 seconds (0.22s)
    rolling update 3 replicas x 2 shards takes 0 seconds (0.82s)
    search with 10 takes 0 seconds (0.23s)
    
    indexing 10000 takes 0 seconds (0.75s)
    rolling update 3 replicas x 2 shards takes 9 seconds (9.08s)
    search with 10 takes 0 seconds (0.22s)
    
    indexing 100000 takes 7 seconds (7.59s)
    rolling update 3 replicas x 2 shards takes 7 minutes and 17 seconds (437.44s)
    search with 10 takes 0 seconds (0.22s)
    
    

    RESULTS NOW

    indexing 1000 takes 0 seconds (0.44s)                                                                                   
    rolling update 3 replicas x 2 shards takes 0 seconds (0.81s)
    
    indexing 10000 takes 1 second (1.01s)                                                                                   
    rolling update 3 replicas x 2 shards takes 2 seconds (2.63s)
    
    indexing 100000 takes 8 seconds (8.10s)                                                                                 
    rolling update 3 replicas x 2 shards takes 3 minutes and 27 seconds (207.14s)
    
    

    MORE BENCHMARKING

    indexing 500000 takes 30 seconds (30.07s)    
    rolling update 3 replicas x 2 shards takes 26 minutes and 57 seconds (1617.99s)
    search with 10 takes 0 seconds (0.21s)
    
    opened by cristianmtr 3
  • Status endpoint does not allow for compositing data with other executors

    Status endpoint does not allow for compositing data with other executors

    If another executor would also like to report some status information using the same status endpoint the return of the HNSQPostgresIndexer will remove it.

    It seems some manner of using object update on the tags or just placing the status under a particular key would be more friendlier.

    https://github.com/jina-ai/executor-hnsw-postgres/blob/79754090665e8bb86e85ab5693fa9b8be80977ce/executor/hnswpsql.py#L322

    opened by louisconcentricsky 1
  • feat: background sync (with threads)

    feat: background sync (with threads)

    Closes https://github.com/jina-ai/internal-tasks/issues/293

    Issues

    • [x] timestamp timezone difference
    • [x] psql connection pool gets exhausted
    • [x] locking resources in threaded access

    NOTE: Even if we don't merge this, the refactoring of PSQL Handler still needs to be merged, as the previous usage of Conn Pool had issues.

    opened by cristianmtr 1
  • fail to connect to PostgreSQL with docker-compose

    fail to connect to PostgreSQL with docker-compose

    • start a PostgreSQL service with docker:

    docker run -e POSTGRES_PASSWORD=123456 -p 127.0.0.1:5432:5432/tcp postgres:13.2

    • build a flow with one executor:HNSWPostgresIndexer

    • run the flow locally, it works well

    • expose the flow to docker-compose yaml, and run the flow with docker-compose ,get an error:

    image

    jina version info:

    
    - jina 3.3.19
    - docarray 0.12.2
    - jina-proto 0.1.8
    - jina-vcs-tag (unset)
    - protobuf 3.20.0
    - proto-backend cpp
    - grpcio 1.43.0
    - pyyaml 6.0
    - python 3.10.2
    - platform Linux
    - platform-release 4.4.0-186-generic
    - platform-version #216-Ubuntu SMP Wed Jul 1 05:34:05 UTC 2020
    - architecture x86_64
    - processor x86_64
    - uid 48710637999860
    - session-id 906abcd2-c797-11ec-b1df-2c4d544656f4
    - uptime 2022-04-29T16:37:11.758133
    - ci-vendor (unset)
    * JINA_DEFAULT_HOST (unset)
    * JINA_DEFAULT_TIMEOUT_CTRL (unset)
    * JINA_DEFAULT_WORKSPACE_BASE /home/chenhao/.jina/executor-workspace
    * JINA_DEPLOYMENT_NAME (unset)
    * JINA_DISABLE_UVLOOP (unset)
    * JINA_FULL_CLI (unset)
    * JINA_GATEWAY_IMAGE (unset)
    * JINA_GRPC_RECV_BYTES (unset)
    * JINA_GRPC_SEND_BYTES (unset)
    * JINA_HUBBLE_REGISTRY (unset)
    * JINA_HUB_CACHE_DIR (unset)
    * JINA_HUB_NO_IMAGE_REBUILD (unset)
    * JINA_HUB_ROOT (unset)
    * JINA_LOG_CONFIG (unset)
    * JINA_LOG_LEVEL (unset)
    * JINA_LOG_NO_COLOR (unset)
    * JINA_MP_START_METHOD (unset)
    * JINA_RANDOM_PORT_MAX (unset)
    * JINA_RANDOM_PORT_MIN (unset)
    * JINA_VCS_VERSION (unset)
    * JINA_CHECK_VERSION True
    
    opened by jerrychen1990 0
  • test: bug rolling update clear

    test: bug rolling update clear

    if you remove from tests/integration/test_hnsw_psql.py

    L:180

            if benchmark:
                f.post('/clear')
    

    the test test_benchmark_basic fails when it runs the second case

    even though clear is called at the beginning of the flow.

    Why?

    yes, /clear only hits one replica. but when we restart the flow there should be completely new replicas anyway

    opened by cristianmtr 0
  • performance(HNSWPSQL): syncing is slow

    performance(HNSWPSQL): syncing is slow

    Right now sync will be slow

    • [ ] we are iterating and doing individual updates (should batch somehow, per sync operation type - index, update, delete)
    • [x] if rebuild, the operations will always be index. We should optimize for this. Done in #5

    Numbers before any perf refactoring

    Performance

    indexing 1000 ...       indexing 1000 takes 0 seconds (0.22s)
    rolling update 3 replicas x 2 shards ...            [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
    rolling update 3 replicas x 2 shards takes 0 seconds (0.82s)
    search with 10 ...      search with 10 takes 0 seconds (0.23s)
    
    indexing 10000 ...      indexing 10000 takes 0 seconds (0.75s)
    rolling update 3 replicas x 2 shards ...            [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
    rolling update 3 replicas x 2 shards takes 9 seconds (9.08s)
    search with 10 ...      search with 10 takes 0 seconds (0.22s)
    
    indexing 100000 ...     indexing 100000 takes 7 seconds (7.59s)
    rolling update 3 replicas x 2 shards ...            [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
    rolling update 3 replicas x 2 shards takes 7 minutes and 17 seconds (437.44s)
    search with 10 ...      search with 10 takes 0 seconds (0.22s)
    
    
    priority/important-soon type/maintenance 
    opened by cristianmtr 0
Releases(v0.9)
  • v0.8(Mar 8, 2022)

  • v0.7(Feb 11, 2022)

  • v0.6(Jan 3, 2022)

    What's Changed

    • docs: fix typo in delete endpoint and clarify by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/14

    Full Changelog: https://github.com/jina-ai/executor-hnsw-postgres/compare/v0.5...v0.6

    Source code(tar.gz)
    Source code(zip)
  • v0.5(Dec 14, 2021)

    What's Changed

    • fix: type of trav paths by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/13

    Full Changelog: https://github.com/jina-ai/executor-hnsw-postgres/compare/v0.4...v0.5

    Source code(tar.gz)
    Source code(zip)
  • v0.4(Dec 9, 2021)

    What's Changed

    • fix: allow using Executor in local mode by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/12

    Full Changelog: https://github.com/jina-ai/executor-hnsw-postgres/compare/v0.3...v0.4

    Source code(tar.gz)
    Source code(zip)
  • v0.3(Nov 26, 2021)

    What's Changed

    • feat: background sync (with threads) by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/9
    • docs: add docs on bg sync by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/11

    Full Changelog: https://github.com/jina-ai/executor-hnsw-postgres/compare/v0.2...v0.3

    Source code(tar.gz)
    Source code(zip)
  • v0.2(Nov 22, 2021)

  • v0.1(Nov 18, 2021)

Owner
Jina AI
A Neural Search Company. We provide the cloud-native neural search solution powered by state-of-the-art AI technology.
Jina AI
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023