An implementation of RetinaNet in PyTorch.

Overview

RetinaNet

An implementation of RetinaNet in PyTorch.

RetinaNet Structure

Installation

  1. Install PyTorch and torchvision.
  2. For faster data augmentation, install pillow-simd:
pip uninstall -y pillow
pip install pillow-simd

Training

COCO 2017

  1. First, install pycocotools:
git clone https://github.com/pdollar/coco/
cd coco/PythonAPI
make
python setup.py install
cd ../..
rm -r coco
  1. Then download COCO 2017 into ./datasets/COCO/:
cd datasets
mkdir COCO
cd COCO

If your using wget:

wget http://images.cocodataset.org/zips/train2017.zip &&
wget http://images.cocodataset.org/zips/val2017.zip &&
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip

If your using aria2c (recommended on for higher bandwidth connections and for allowing resumption of the download. Tune the number of max concurrent downloads (-j) and max connections per server (-x) as needed:

aria2c -x 10 -j 10 http://images.cocodataset.org/zips/train2017.zip &&
aria2c -x 10 -j 10 http://images.cocodataset.org/zips/val2017.zip &&
aria2c -x 10 -j 10 http://images.cocodataset.org/annotations/annotations_trainval2017.zip

unzip *.zip
rm *.zip

Then just run:

python train_coco.py

Pascal VOC

cd datasets
mkdir VOC
cd VOC
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar &&
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar &&
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar

If your using aria2c (recommended on for higher bandwidth connections and for allowing resumption of the download. Tune the number of max concurrent downloads (-j) and max connections per server (-x) as needed:

aria2c -x 10 -j 10 http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar &&
aria2c -x 10 -j 10 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar &&
aria2c -x 10 -j 10 http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar

tar xf *.tar
rm *.tar

Then just run:

python train_voc.py

Custom Dataset

Lots to write here. 😉

Evaluation

To evaluate an image on a trained model:

python eval.py [checkpoint_path] [image_path]

This will create an image (output.jpg) with bounding box annotations.

Todo

  1. Finish converting the COCO dataset class to work with batches.
  2. Train COCO 2017 for 90,000 iterations and save a reusable checkpoint.
  3. Try training on Pascal VOC and add download instructions.
  4. Produce bounding box outputs for a few sanity check images.
  5. Upload trained weights to Github releases.
  6. Train on the 🔮 magic proprietary dataset .

Credits

Owner
Conner Vercellino
Interested in NLP, metalearning and other random machine learning topics.
Conner Vercellino
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022