GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

Overview

GEP (GDB Enhanced Prompt)

asciicast

GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility.

Why I need this plug-in?

GDB's original prompt is using hardcoded built-in GNU readline library, we can't add our custom function and key binding easily. The old way to implement them is by patching the GDB's C source code and compiling it again.

But now, you can write your function in Python and use arbitrary key binding easily with GEP without any patching!

And also, GEP has some awesome features already, you can directly use it!

Features

  • Ctrl+R for fzf history reverse search
  • up-arrow for partial string matching in history
  • TAB for auto-completion with floating window
  • fish-like autosuggestions
  • has the ability to build custom key binding and its callback function by modifying geprc.py

How to install it?

Make sure you have GDB 8.0 or higher compiled with Python3.6+ bindings, then:

  1. Install fzf: Installation

  2. Download this plug-in and install it:

git clone https://github.com/lebr0nli/GEP.git && \
cd GEP && \
sh install.sh

Note: This plug-in is using prompt-toolkit 2.0.10 (because IDK why prompt-toolkit 3 is not working with GDB Python API), so the install.sh will download prompt_toolkit==2.0.10 to ~/GEP/. Maybe we can build our prompt toolkit just for this plug-in in the future.

  1. Add source ~/GEP/.gdbinit-gep to the last line of your ~/.gdbinit

You can run:

echo 'source ~/GEP/.gdbinit-gep' >> ~/.gdbinit
  1. Enjoy!

For more configuration

You can modify configuration about history and auto-completion in ~/GEP/.gdbinit-gep.

You can also add your custom key bindings by modifying ~/GEP/geprc.py.

The trade-offs

Since GDB doesn't have a good Python API to fully control and emulate its prompt, this plug-in has some side effects.

However, the side effects are avoidable, here are the guides to avoid them:

gdb.event.before_prompt

The GDB Python API event: gdb.event.before_prompt may be called only once.

So if you are using a GDB plug-in that is listening on this event, this plug-in will cause some bugs.

As far as I know, pwndbg and gef won't be bothered by this side effect now.

To avoid this, you can change the callback function by adding them to gdb.prompt_hook, gdb.prompt_hook has almost the same effects with event.before_prompt, but gdb.prompt_hook can be directed invoke, so this plug-in still can emulate that callback for you!

dont-repeat

When your input is empty and directly press ENTER, GDB will execute the previous command from history if that command doesn't have the property: dont-repeat.

As far as I know, there is no GDB API for checking a command's property.

So, I added some commonly used commands (for original GDB API and GEF) which have that property in a list to avoid repeatedly executing them.

If you have some user-defined function that has dont-repeat property, add your command into the list manually, too.

Note: The list is in .gdbinit-gep.py and the variable name is DONT_REPEAT.

If you found some commands which should or shouldn't be added in that list, let me know on the issue page, thanks!

Bugs, suggestions, and ideas

If you found any bug, or you have any suggestions/ideas about this plug-in, feel free to leave your feedback on the GitHub issue page or send me a pull request!

Thanks!

Owner
Alan Li
Stay hungry, stay foolish. Keep hacking!
Alan Li
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022