Codebase for testing whether hidden states of neural networks encode discrete structures.

Overview

A vector space and a parse tree representing the same info.

structural-probes

Codebase for testing whether hidden states of neural networks encode discrete structures.

Based on the paper A Structural Probe for Finding Syntax in Word Representations.

See the blog post on structural probes for a brief introduction.

Installing & Getting Started

  1. Clone the repository.

     git clone https://github.com/john-hewitt/structural-probes/
     cd structural-probes
    
  2. [Optional] Construct a virtual environment for this project. Only python3 is supported.

     conda create --name sp-env
     conda activate sp-env
    
  3. Install the required packages. This mainly means pytorch, scipy, numpy, seaborn, etc. Look at pytorch.org for the PyTorch installation that suits you and install it; it won't be installed via requirements.txt. Everything in the repository will use a GPU if available, but if none is available, it will detect so and just use the CPU, so use the pytorch install of your choice.

     conda install --file requirements.txt
     pip install pytorch-pretrained-bert
    
  4. Download some pre-packaged data from the English Universal Dependencies (EWT) dataset and pretrained probes to get your feet wet.

     bash ./download_example.sh
    

    This will make the directory example/data, and in it will be 9 files, 3 for each of train,dev,test.

    • en_ewt-ud-{train,dev,test}.conllu: the parsed language data
    • en_ewt-ud-{train,dev,test}.txt: whitespace-tokenized, sentence-per-line language data.
    • en_ewt-ud-{train,dev,test}.elmo-layers.hdf5: the ELMo hidden states for each sentence of the language data, constructed by running elmo on the .txt files.
  5. Test a pre-trained structural probe on BERTlarge with our demo script!

     printf "The chef that went to the stores was out of food" | python structural-probes/run_demo.py example/demo-bert.yaml
    

    The script will make a new directory under example/results/ and store some neat visualizations there. It will use pre-trained probe parameters stored at example/data, downloaded with download_example.sh. Try out some other sentences too!

  6. Run an experiment using an example experiment configuration, and take a look at the resultant reporting!

     python structural-probes/run_experiment.py example/config/prd_en_ewt-ud-sample.yaml
    

    The path to a new directory containing the results of the experiment will be in the first few lines of the logging output of the script. Once you go there, you can see dev-pred*.png: some distance matrices printed by the script, as well as files containing the quantitative reporting results, like dev.uuas, the unlabeled undirected attachment score. These will all be very low, since the probe was trained on very little data!

Run a pretrained structural probe on BERT-large quickly on the command line.

It's easy to get predictions on a sentence (or file of sentences) using our demo script and the pre-trained structural probes we release. We use pytorch-pretrained-bert to get BERT subword embeddings for each sentence; it should be installed during setup of the repository.

Make sure you've run download_example.sh; this will download two probe parameter files to example/data/. Also make sure you've installed all dependencies. One is a distance probe on the 16th hidden layer of BERT large, and the other is a depth probe on the same layer. The configuration file example/demo-bert.yaml has the right paths already plugged in; just pipe text into the demo file, as follows:

 printf "The chef that went to the stores was out of food" | python structural-probes/run_demo.py example/demo-bert.yaml

If you want to run multiple sentences at once, you can either do so via printf:

 printf "The chef that went to the stores was out of food\nThe chef that went to the stores and talked to the parents was out of food" | python structural-probes/run_demo.py example/demo-bert.yaml

Or piping/redirecting a file to stdin:

 cat my_set.txt | python structural-probes/run_demo.py example/demo-bert.yaml

The script will print out a directory to which it has written visualizations of both parse depths and parse distances as predicted by a distance probe and a depth probe. You'll also see demo.tikz, which is a bit of LaTeX for the tikz-dependency package. With tikz-dependency in the same directory as your LaTeX file, you can plop this bit of LaTeX in a figure environment and see the minimum spanning tree it constructs. It'd look a bit like this:

\documentclass{article}
\usepackage{tikz-dependency}
\usepackage{tikz}

\pgfkeys{%
/depgraph/reserved/edge style/.style = {% 
white, -, >=stealth, % arrow properties                                                                            
black, solid, line cap=round, % line properties
rounded corners=2, % make corners round
},%
}
\begin{document}
\begin{figure}
  \centering
  \small
  \begin{dependency}[hide label, edge unit distance=.5ex]
    \begin{deptext}[column sep=0.05cm]
      The\& chef\& who\& ran\& to\& the\& stores\& is\& out\& of\& food \\
    \end{deptext}                                                                                                                                                                                                                           
    \depedge[edge style={red}, edge below]{8}{9}{.}
    \depedge[edge style={red}, edge below]{5}{7}{.}
    \depedge[edge style={red}, edge below]{4}{5}{.}
    \depedge[edge style={red}, edge below]{1}{2}{.}
    \depedge[edge style={red}, edge below]{6}{7}{.}
    \depedge[edge style={red}, edge below]{9}{10}{.}
    \depedge[edge style={red}, edge below]{10}{11}{.}
    \depedge[edge style={red}, edge below]{3}{4}{.}
    \depedge[edge style={red}, edge below]{2}{4}{.}
    \depedge[edge style={red}, edge below]{2}{8}{.}
  \end{dependency}
\end{figure}
\end{document}

Which results in a PDF with the following:

A predicted parse tree for the sentence 'The chef who ran to the stores is out of food'

Note that your text should be whitespace-tokenized! If you want to evaluate on a test set with gold parses, or if you want to train your own structural probes, read on.

The experiment config file

Experiments run with this repository are specified via yaml files that completely describe the experiment (except the random seed.) In this section, we go over each top-level key of the experiment config.

Dataset:

  • observation_fieldnames: the fields (columns) of the conll-formatted corpus files to be used. Must be in the same order as the columns of the corpus. Each field will be accessable as an attribute of each Observation class (e.g., observation.sentence contains the sequence of tokens comprising the sentence.)
  • corpus: The location of the train, dev, and test conll-formatted corpora files. Each of train_path, dev_path, test_path will be taken as relative to the root field.
  • embeddings: The location of the train, dev, and test pre-computed embedding files (ignored if not applicable. Each of train_path, dev_path, test_path will be taken as relative to the root field. - type is ignored.
  • batch_size: The number of observations to put into each batch for training the probe. 20 or so should be great.
dataset:
  observation_fieldnames:
     - index
     - sentence
     - lemma_sentence
     - upos_sentence
     - xpos_sentence
     - morph
     - head_indices
     - governance_relations
     - secondary_relations
     - extra_info
     - embeddings
  corpus:
    root: example/data/en_ewt-ud-sample/
    train_path: en_ewt-ud-train.conllu
    dev_path: en_ewt-ud-dev.conllu
    test_path: en_ewt-ud-test.conllu
  embeddings:
    type: token #{token,subword}
    root: example/data/en_ewt-ud-sample/ 
    train_path: en_ewt-ud-train.elmo-layers.hdf5
    dev_path: en_ewt-ud-dev.elmo-layers.hdf5
    test_path: en_ewt-ud-test.elmo-layers.hdf5
  batch_size: 40

Model

  • hidden_dim: The dimensionality of the representations to be probed. The probe parameters constructed will be of shape (hidden_dim, maximum_rank)
  • embedding_dim: ignored
  • model_type: One of ELMo-disk, BERT-disk, ELMo-decay, ELMo-random-projection as of now. Used to help determine which Dataset class should be constructed, as well as which model will construct the representations for the probe. The Decay0 and Proj0 baselines in the paper are from ELMo-decay and ELMo-random-projection, respectively. In the future, will be used to specify other PyTorch models.
  • use_disk: Set to True to assume that pre-computed embeddings should be stored with each Observation; Set to False to use the words in some downstream model (this is not supported yet...)
  • model_layer: The index of the hidden layer to be used by the probe. For example, ELMo models can use layers 0,1,2; BERT-base models have layers 0 through 11; BERT-large 0 through 23.
  • tokenizer: If a model will be used to construct representations on the fly (as opposed to using embeddings saved to disk) then a tokenizer will be needed. The type string will specify the kind of tokenizer used. The vocab_path is the absolute path to a vocabulary file to be used by the tokenizer.
model:
  hidden_dim: 1024 # ELMo hidden dim
  #embedding_dim: 1024 # ELMo word embedding dim
  model_type: ELMo-disk # BERT-disk, ELMo-disk,
  tokenizer:
    type: word
    vocab_path: example/vocab.vocab
  use_disk: True
  model_layer: 2 # BERT-base: {1,...,12}; ELMo: {1,2,3}

Probe, probe-training

  • task_signature: Specifies the function signature of the task. Currently, can be either word, for parse depth (or perhaps labeling) tasks; or word_pair for parse distance tasks.
  • task_name: A unique name for each task supported by the repository. Right now, this includes parse-depth and parse-distance.
  • maximum_rank: Specifies the dimensionality of the space to be projected into, if psd_parameters=True. The projection matrix is of shape (hidden_dim, maximum_rank). The rank of the subspace is upper-bounded by this value. If psd_parameters=False, then this is ignored.
  • psd_parameters: though not reported in the paper, the parse_distance and parse_depth tasks can be accomplished with a non-PSD matrix inside the quadratic form. All experiments for the paper were run with psd_parameters=True, but setting psd_parameters=False will simply construct a square parameter matrix. See the docstring of probe.TwoWordNonPSDProbe and probe.OneWordNonPSDProbe for more info.
  • diagonal: Ignored.
  • prams_path: The path, relative to args['reporting']['root'], to which to save the probe parameters.
  • epochs: The maximum number of epochs to which to train the probe. (Regardless, early stopping is performed on the development loss.)
  • loss: A string to specify the loss class. Right now, only L1 is available. The class within loss.py will be specified by a combination of this and the task name, since for example distances and depths have different special requirements for their loss functions.
probe:
  task_signature: word_pair # word, word_pair
  task_name: parse-distance
  maximum_rank: 32
  psd_parameters: True
  diagonal: False
  params_path: predictor.params
probe_training:
  epochs: 30
  loss: L1

Reporting

  • root: The path to the directory in which a new subdirectory should be constructed for the results of this experiment.
  • observation_paths: The paths, relative to root, to which to write the observations formatted for quick reporting later on.
  • prediction_paths: The paths, relative to root, to which to write the predictions of the model.
  • reporting_methods: A list of strings specifying the methods to use to report and visualize results from the experiment. For parse-distance, the valid methods are spearmanr, uuas, write_predictions, and image_examples. When reporting uuas, some tikz-dependency examples are written to disk as well. For parse-depth, the valid methods are spearmanr, root_acc, write_predictions, and image_examples. Note that image_examples will be ignored for the test set.
reporting:
  root: example/results
  observation_paths:
    train_path: train.observations
    dev_path: dev.observations
    test_path: test.observations
  prediction_paths:
    train_path: train.predictions
    dev_path: dev.predictions
    test_path: test.predictions
  reporting_methods:
    - spearmanr
      #- image_examples
    - uuas

Reporting + visualization

It can be time-consuming to make nice visualizations and make sense of the results from a probing experiment, so this repository does a bit of work for you. This section goes over each of the reporting methods available (under args['reporting']['reporting_methods'] in the experiment config), and exmaples of results.

  • spearmanr: This reporting method calculates the spearman correlation between predicted (distances/depths) and true (distances/depths) as defined by gold parse trees. See the paper or reporting.py docstrings for specifics. With this option enabled, you'll see dev.spearmanr, a TSV with an average Spearman correlation for each sentence length represented in the dev set, as well as dev.spearmanr-5-50-mean, which averages the sentence-average values for all sentence lengths between 5 and 50 (inclusive.)
  • image_examples: This reporting method prints out true and predicted distance matrices as pngs for the first 20 examples in the split. These will be labeled dev-pred0.png, dev-gold0.png, etc. They'll look something like this:

A distance matrix defined by a human-constructed parse tree A distance matrix predicted by a structural probe

  • uuas: This reporting method (only used by parse-distance tasks) will print the unlabeled undirected attachment score to dev.uuas, and write the first 20 development examples' minimum spanning trees (for both gold and predicted distance matrices) in a tikz-dependency LaTeX code format, to dev.tikz. Each sentence can be copy-pasted into a LaTeX doc for visualization. Then they'l look something like this:

    Parse trees constructed as minimum-spanning-trees of gold and predicted distance matrices.

  • root_acc: This reporting method (only used by parse-depth tasks) will print to dev.root_acc the percentage of sentences where the least-deep word in the gold tree (the root) is also the least-deep according to the predicted depths.

Replicating PTB Results for the NAACL'19 Paper

As usual with the PTB, a bit of work has to be done in prepping data (and you have to have the unadulterated PTB data already, not the mangled language modeling benchmark version.)

To replicate our results on the PTB, you'll have to prep some data files. The prep scripts will need to be modified to use paths on your system, but the process is as follows:

  1. Have Stanford CoreNLP installed / on your java classpath, and have allennlp installed.
  2. Convert the PTB constituency trees to Stanford Dependencies in conllx format, using the script scripts/convert_splits_to_depparse.sh. This will write a single conllx file for each of train/dev/test. (This uses CoreNLP.)
  3. Convert the conllx files to sentence-per-line whitespace-tokenized files, using scripts/convert_conll_to_raw.py.
  4. Use scripts/convert_raw_to_bert.py and scripts/convert_raw_to_elmo.sh to take the sentencep-er-line whitespace-tokenized files and write BERT and ELMo vectors to disk in hdf5 format.
  5. Replace the data paths (and choose a results path) in the yaml configs in example/config/naacl19/*/* with the paths that point to your conllx and .hdf5 files as constructed in the above steps. These 118 experiment files specify the configuration of all the experiments that end up in the paper.

Experiments on new datasets or models

In the future I hope to streamline support for plugging in arbitrary PyTorch models in model.py, but because of subword models, tokenization, batching etc. this is beyond my current scope.

Right now, the official way to run experiments on new datasets and representation learners is:

  1. Have a conllx file for the train, dev, and test splits of your dataset.
  2. Write contextual word representations to disk for each of the train, dev, and test split in hdf5 format, where the index of the sentence in the conllx file is the key to the hdf5 dataset object. That is, your dataset file should look a bit like {'0': <np.ndarray(size=(1,SEQLEN1,FEATURE_COUNT))>, '1':<np.ndarray(size=(1,SEQLEN1,FEATURE_COUNT))>...}, etc. Note here that SEQLEN for each sentence must be the number of tokens in the sentence as specified by the conllx file.
  3. Edit a config file from example/config to match the paths to your data, as well as the hidden dimension and labels for the columns in the conllx file. Look at the experiment config section of this README for more information therein. One potential gotcha is that you must have an xpos_sentence field in your conllx (as labeled by your yaml config) since this will be used at evaluation time.

Citation

If you use this repository, please cite:

  @InProceedings{hewitt2019structural,
    author =      "Hewitt, John and Manning, Christopher D.",
    title =       "A Structural Probe for Finding Syntax in Word Representations",
    booktitle =   "North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    year =        "2019",
    publisher =   "Association for Computational Linguistics",
    location =    "Minneapolis, USA",
  }
Owner
John Hewitt
I'm a PhD student working on: NLP, structure, graphs, bash scripts, RNNs, multilinguality, and teaching others to do the same.
John Hewitt
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"

Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim

Billy 9 Aug 22, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021