Boston House Prediction Valuation Tool
Overview
[CVPR2021] De-rendering the World's Revolutionary Artefacts
De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"
PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming
CUda Matrix Multiply library.
cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the
Simple codebase for flexible neural net training
neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi
masscan + nmap + Finger
说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"
RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"
ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.
TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions
SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.
ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset
Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da
ChainerRL is a deep reinforcement learning library built on top of Chainer.
ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al
Tool for working with Y-chromosome data from YFull and FTDNA
ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"
Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f
Repository of best practices for deep learning in Julia, inspired by fastai
FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network
Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T
StyleGAN-Human: A Data-Centric Odyssey of Human Generation
StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks
Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app
Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task
Siamese Deep Neural Networks for Semantic Text Similarity PyTorch A repository c

