Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

Overview

TechSEO Crawler

Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Screenshot

Play with the results here: Simple Search Engine

Please Note: The link above is hosted on a small AWS box, so if you have issues loading, try again later.

Slideshare is here: Building a Simple Crawler on a Toy Internet

Description

Web Folder

In order to crawl a small internet of sites, we have to create it. This tool creates 3 small sites from Wikipedia data and hosts them on Github Pages. The sites are not linked to any other site on the internet, but are linked to each other.

Main function

This tool attempts to implement a small ecosystem of 3 websites, along with a simple crawler, renderer, and indexer. While the author did research to construct the repo, it was a design feature to prefer simplicity over complexity. Items that are part of large crawling infrastructures, most notably disparate systems, and highly efficient code and data storage, are not part of this repo. We focus on simple representations of items such that it is more accessible to newer developers.

Parts:

  • PageRank
  • Chrome Headless Rendering
  • Text NLP Normalization
  • Bert Embeddings
  • Robots
  • Duplicate Content Shingling
  • URL Hashing
  • Document Frequency Functions (BM25 and TFIDF)

Made for a presentation at Tech SEO Boost

Getting Started

Get the repo

git clone https://github.com/jroakes/tech-seo-crawler.git

Dependencies

  • Please see the requirements.txt file for a list of dependencies.

It is strongly suggested to do the following, first, in a new, clean environment.

  • May need to install [Microsoft Build Tools] (http://go.microsoft.com/fwlink/?LinkId=691126&fixForIE=.exe.) and upgrade setup tools pip install --upgrade setuptools if you are on Windows.
  • Install PyTorch pip install torch==1.3.1+cpu -f https://download.pytorch.org/whl/torch_stable.html
  • See requirements-libraries.txt file for remaining library requirements. To install the frozen requirements this was developed with, use pip install -r requirements.txt

Install with:

pip install -r requirements.txt

Executing program

  1. Make sure you've created your three sites first. See README file in the web folder. Conversely, if you just want to use the crawler/renderer, you can run with the premade sites and skip to step 3.
  2. After creating your three sites, go to the config file and add the crawler_seed URL. This will be the organization name you created on github.io. For example: myorganization.github.io/
  3. Run streamlit run main.py in the terminal or command prompt. A new Browser window should open.
  4. The tool can also be run interactively with the Run.ipynb notebook in Jupyter.

Sharing

If you want to share your search engine for others to see, you can use Streamlit and Localtunnel.

  1. Install Localtunnel npm install -g localtunnel
  2. Start the tunnel with lt --port 80 --subdomain <create a unique sub-domain name>
  3. Start the Streamlit server with streamlit run main.py --server.port 80 --global.logLevel 'warning' --server.headless true --server.enableCORS false --browser.serverAddress <the unique subdomain from step 2>.localtunnel.me
  4. Navigate to https://<the unique subdomain from step 2>.localtunnel.me in your browser, or share the link with a friend.

Complete example:

In a new terminal:

npm install -g localtunnel
lt --port 80 --subdomain tech-seo-crawler

In another terminal:

cd /tech-seo-crawler/
activate techseo
streamlit run main.py --server.port 80 --global.logLevel 'warning' --server.headless true --server.enableCORS false --browser.serverAddress tech-seo-crawler.localtunnel.me

Troubleshooting

  • When running in streamlit we experienced a few connection closed errors during the Rendering process. If you experience this error just rerun the script by using the top right menu and clicking on rerun in streamlit.

Contributors

Contributors names and contact info

Version History

  • 0.1 - Alpha
    • Initial Release

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments

Libraries

Topics

Owner
JR Oakes
Hacker, SEO, NC State fan, co-organizer of Raleigh and RTP Meetups, as well as @sengineland author. Tweets are my own.
JR Oakes
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022