Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Overview

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

This is the Pytorch implementation for sparse progressive distillation (SPD). For more details about the motivation, techniques and experimental results, refer to our paper here.

Running

  • Environment Preparation (using python3)

    pip install -r requirements.txt
  • Dataset Preparation

    The original GLUE dataset could be downloaded here.

BERT_base fine-tuning on GLUE

We use finetuned BERT_base as the teacher. For each task of GLUE benchmark, we obtain the finetuned model using the original huggingface transformers code with the following script.

python run_glue.py \
          --model_name_or_path $INT_DIR \
          --task_name $TASK_NAME \
          --do_train \
          --do_eval \
          --data_dir $GLUE_DIR/$TASK_NAME/ \
          --max_seq_length 128 \
          --per_gpu_train_batch_size 32 \
          --per_gpu_eval_batch_size 32 \
          --learning_rate 3e-5 \
          --num_train_epochs 4.0 \
          --output_dir $OUT_DIR \
          --evaluate_during_training \
          --overwrite_output_dir \
          --logging_steps 400 \
          --logging_dir $OUT_DIR \
          --save_steps 10000

Sparse Progressive Distillation

We use run_glue.py to run the sparse progressive distillation. --num_prune_epochs is the epochs for pruning. --num_train_epochs is the total number of epochs (pruning, progressive distillation, finetuning).

python run_glue.py \
  --model_name_or_path PATH_TO_FINETUNED_MODEL \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --do_lower_case \
  --data_dir $GLUE_DIR/$TASK_NAME/ \
  --max_seq_length 128 \
  --per_gpu_train_batch_size 32 \
  --per_gpu_eval_batch_size 32 \
  --learning_rate 6.4e-4 \
  --save_steps 50 \
  --num_prune_epochs 30 \
  --num_train_epochs 60 \
  --sparsity 0.9 \
  --output_dir $OUT_DIR \
  --evaluate_during_training \
  --replacing_rate 0.8 \
  --overwrite_output_dir \
  --steps_for_replacing 0 \
  --scheduler_type linear

To Dos

  • Provide our teacher model for each task.

  • Provide best performed model checkpoint for each task.

High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022