Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

Overview

IAug_CDNet

Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

Overview

We propose a novel data-level solution, namely Instance-level change Augmentation (IAug), to generate bi-temporal images that contain changes involving plenty and diverse buildings by leveraging generative adversarial training. The key of IAug is to blend synthesized building instances onto appropriate positions of one of the bi-temporal images. To achieve this, a building generator is employed to produce realistic building images that are consistent with the given layouts. Diverse styles are later transferred onto the generated images. We further propose context-aware blending for a realistic composite of the building and the background. We augment the existing CD datasets and also design a simple yet effective CD model - CDNet. Our method (CDNet + IAug) has achieved state-of-the-art results in two building CD datasets (LEVIR-CD and WHU-CD). Interestingly, we achieve comparable results with only 20% of the training data as the current state-of-the-art methods using 100% data. Extensive experiments have validated the effectiveness of the proposed IAug. Our augmented dataset has a lower risk of class imbalance than the original one. Conventional learning on the synthesized dataset outperforms several popular cost-sensitive algorithms on the original dataset.

Building Generator

See building generator for details.

Synthesized images (256 * 256) by the generator (trained on the AIRS building dataset).syn_example_airs

Synthesized images (64 * 64) by the generator (trained on the Inria building dataset).syn_example_inria

Installation

This code requires PyTorch 1.0 and python 3+. Please install dependencies by

pip install -r requirements.txt

Generating Images Using Pretrained Model

Once the dataset is ready, the result images can be generated using pretrained models.

  1. Download the tar of the pretrained models from the Google Drive

  2. Generate images using the pretrained model.

    python test.py --model pix2pix --name $pretrained_folder --results_dir $results_dir --dataset_mode custom --label_dir $label_dir --label_nc 2 --batchSize $batchSize --load_size $size --crop_size $size --no_instance --which_epoch lastest

    pretrained_folder is the directory name of the checkpoint file downloaded in Step 1, results_dir is the directory name to save the synthesized images, label_dir is the directory name of the semantic labels, size is the size of the label map fed to the generator.

  3. The outputs images are stored at results_dir. You can view them using the autogenerated HTML file in the directory.

For simplicity, we also provide the test script in scripts/run_test.sh, one can modify the label_dir and name and then run the script.

Training New Models

New models can be trained with the following commands.

  1. Prepare the dataset. You can first prepare the building image patches and corresponding label maps in two folders (image_dir, label_dir).

  2. Train the model.

# To train on your own custom dataset
python train.py --name [experiment_name] --dataset_mode custom --label_dir [label_dir] -- image_dir [image_dir] --label_nc 2

There are many options you can specify. Please use python train.py --help. The specified options are printed to the console. To specify the number of GPUs to utilize, use --gpu_ids. If you want to use the second and third GPUs for example, use --gpu_ids 1,2.

To log training, use --tf_log for Tensorboard. The logs are stored at [checkpoints_dir]/[name]/logs.

Acknowledge

This code borrows heavily from spade.

Color Transfer

See Color Transfer for deteils.

We resort to a simple yet effective nonlearning approach to match the color distribution of the two image sets (GAN-generated images and original images in the change detection dataset).

color_transfer

Requirements

  • Matlab

Usage

We provide two demos to show the color transfer.

When you do not have the object mask. You can edit the file ColorTransferDemo.m, modify the file path of the Im_target and Im_source. After you run this file, the transfered image is saved as result_Image.jpg.

When you do have both the building image and the object mask. You can edit the file ColorTransferDemo_with_mask.m, modify the file path of the Im_target, Im_source, m_target and m_source. After you run this file, the transfered image is saved as result_Image.jpg.

Acknowledge

This code borrows heavily from https://github.com/AissamDjahnine/ColorTransfer.

Shadow Extraction

We show a simple shadow extraction method. The extracted shadow information can be used to make a more realistic image composite in the latter process.

shadow_extraction

We provide some examples for shadow extraction. The samples are in the folder samples\shadow_sample.

Usage

You can edit the file extract_shadow.py and modify the path of the image_folder, label_folder and out_folder. Make sure that the image files are in image_folder and the corresponding label files are in label_folder. Run the following script:

python extract_shadow.py

Once you have successfully run the python file, the results can be found in the out folder.

Instance augmentation

Here, we provide the python implementation of instance augmentation.

image-20210413152845314

We provide some examples for instance augmentation. The samples are in the folder samples\SYN_CD.

Usage

You can edit the file composite_CD_sample.py and modify the following values:

#  first define the some paths
A_folder = r'samples\LEVIR\A'
B_folder = r'samples\LEVIR\B'
L_folder = r'samples\LEVIR\label'
ref_folder = r'samples\LEVIR\ref'
#  instance path
src_folder = r'samples\SYN_CD\image' #test
label_folder = r'samples\SYN_CD\shadow'  # test
out_folder = r'samples\SYN_CD\out_sample'
os.makedirs(out_folder, exist_ok=True)
# how many instance to paste per sample
M = 50

Then, run the following script:

python composite_CD_sample.py

Once you have successfully run the python file, the results can be found in the out folder.

CDNet

Coming soon~~~~

Citation

If you use this code for your research, please cite our paper:

@Article{chen2021,
    title={Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images},
    author={Hao Chen, Wenyuan Li and Zhenwei Shi},
    year={2021},
    journal={IEEE Transactions on Geoscience and Remote Sensing},
    volume={},
    number={},
    pages={1-16},
    doi={10.1109/TGRS.2021.3066802}
}
Owner
keep forward
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022