Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Overview

Efficient Nearest Neighbor Language Models

This is implementation of the paper:

Efficient Nearest Neighbor Language Models
Junxian He, Graham Neubig, Taylor Berg-Kirkpatrick
EMNLP 2021

This repo implements several techniques to speed up the evaluation of non-parametric, nearest neighbor language models. Specifically, we improve the efficiency along three axes: adaptive retrieval, datastore prunning, and dimension reduction.

Install Dependencies

This repository is largly based on the knnlm repo which is a fork of Fairseq (commit da544b). Please use the exact commit page to determine software requirements for using this code.

git clone [email protected]:jxhe/efficient-knnlm.git

cd efficient-knnlm
pip install --editable .
pip install faiss

Hardware

Experiments for this paper were conducted on machines that contain 32 CPUs, 100GB of RAM, and one NVIDIA 3090 24GB GPU. Saving the Wikitext-103 datastore requires 200GB of disk space. Note that the number of CPUs has a great impact on the speed.

Running Efficient kNNLM

Preparation

Data

We share Fairseq's instructions on how to prepare the data here.

mkdir -p datasets/wikitext-103
cp examples/language_model/wikitext-103/prepare-wikitext-103.sh datasets/wikitext-103

cd datasets/wikitext-103
bash prepare-wikitext-103.sh
cd ../..

TEXT=datasets/wikitext-103
python preprocess.py \
    --only-source \
    --trainpref $TEXT/wiki.train.tokens \
    --validpref $TEXT/wiki.valid.tokens \
    --testpref $TEXT/wiki.test.tokens \
    --destdir data-bin/wikitext-103 \
    --workers 20

Download the language model checkpoint pretrained on WikiText-103

# the model checkpoint link is from the knnlm repo
wget https://nlp.stanford.edu/projects/knnlm/wt103_checkpoint_best.pt -P knnlm_ckpt

Save the datastore

mkdir -p dstore

python eval_lm.py data-bin/wikitext-103 \
    --path knnlm_ckpt/checkpoint_best.pt \
    --sample-break-mode none --max-tokens 3072 \
    --softmax-batch 1024 --gen-subset train \
    --context-window 1536 --tokens-per-sample 1536 \
    --dstore-mmap dstore/dstore --knn-keytype 'last_ffn_input' \
    --dstore-size 103225485 --model-overrides "{'knn_keytype': 'last_ffn_input'}" \
    --save-knnlm-dstore --fp16 --dstore-fp16

Dimension Reduction

# the script applies PCA of dimension 512 by default 
# the PCA hyperparameter can be tuned in this script
# set pca=0 to revert back to the vanilla version
bash ef_knnlm/build_faiss.sh

The faiss index is saved into dstore. Try it out:

bash ef_knnlm/utils_cmd/eval_knnlm.sh \
    -d wikitext-103 \
    -s valid \
    -p dstore/dstore_size103225485_embed1024_fp16 \
    -i dstore/knn.103225485.pca512.m64.index \
    -n 103225485 \

You should already observe a speedup.

Adaptive Retrieval

prepare heldout data to train the retrieval adaptor

# this randomly selects 90% of validation data as the training data to 
# train the retrieval adaptor
bash ef_knnlm/adaptive_retrieval/prepare_heldout.sh wikitext-103

prepare features

bash ef_knnlm/adaptive_retrieval/prepare_feature_pipeline.sh

train

bash ef_knnlm/adaptive_retrieval/train_ar.sh

It saves the retrieval adaptor checkpoints into checkpoint/wikitext-103-valid

evaluation

# the cutoff ratio in adaptive retrieval
# by default we cut off half of the retrieval
cutoff=50

# please change this to the .pt file path observed from the last step
ar_ckpt=xxx

# this hyperparameter needs to be changed if 
# the datastore sizes change (e.g. datastore pruning)
size=103225485

dstore_prefix=dstore/dstore_size${size}_embed1024_fp16
index_file=dstore/knn.${size}.pca512.m64.index

bash ef_knnlm/utils_cmd/eval_knnlm.sh \
    -d wikitext-103 \
    -s test \
    -p ${dstore_prefix} \
    -i ${index_file} \
    -c knnlm_ckpt/wt103_checkpoint_best.pt \
    -n ${size} \
    -f datasets/wikitext-103 \
    -a ctxt,freq,lm_ent,lm_max,fert \
    -u ${cutoff} \
    -h ${ar_ckpt} \
    # -w "True"

Datastore Pruning

precompute all the retrieval results for every record in the datastore:

# It is possible to parallel this operation by change 
# "--start-point" and "--num" arguments so that the training
# data would be splitted into multiple smaller ones. In this case
# the retrieval results would be saved into multiple files
bash ef_knnlm/dstore_compression/save_retrieval_results.sh

The retrieval results are saved into dstore/greedy_merge, other datastore pruning algorithms may be played around using these pre-computed results.

greedy merging

# perform greedy merging to yield a new smaller datastore, 
# and build faiss index from the new datastore
bash ef_knnlm/dstore_compression/merge_compression.sh

The pruned datastore and index are saved into dstore/greedy_merging, replace the previousdstore_prefix/index_file with the new ones to use the pruned the datastore. The option -w "True"needs to be passed to eval_knnlm.sh to read the generated datastore weights file from greedy merging.

Reference

@inproceedings{he2021eff,
title={Efficient Nearest Neighbor Language Models},
author={Junxian He and Graham Neubig and Taylor Berg-Kirkpatrick},
booktitle={Proceedings of EMNLP},
year={2021}
}
Owner
Junxian He
NLP/ML PhD student at CMU
Junxian He
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023