Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Overview

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models

Pouya Samangouei*, Maya Kabkab*, Rama Chellappa

[*: authors contributed equally]

This repository contains the implementation of our ICLR-18 paper: Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models

If you find this code or the paper useful, please consider citing:

@inproceedings{defensegan,
  title={Defense-GAN: Protecting classifiers against adversarial attacks using generative models},
  author={Samangouei, Pouya and Kabkab, Maya and Chellappa, Rama},
  booktitle={International Conference on Learning Representations},
  year={2018}
}

alt text alt text

Contents

  1. Installation
  2. Usage

Installation

  1. Clone this repository:
git clone --recursive https://github.com/kabkabm/defensegan
cd defensegan
git submodule update --init --recursive
  1. Install requirements:
pip install -r requirements.txt

Note: if you don't have a GPU install the cpu version of TensorFlow 1.7.

  1. Download the dataset and prepare data directory:
python download_dataset.py [mnist|f-mnist|celeba]
  1. Create or link output and debug directories:
mkdir output
mkdir debug

or

ln -s <path-to-output> output
ln -s <path-to-debug> debug

Usage

Train a GAN model

python train.py --cfg <path> --is_train <extra-args>
  • --cfg This can be set to either a .yml configuration file like the ones in experiments/cfgs, or an output directory path.
  • <extra-args> can be any parameter that is defined in the config file.

The training will create a directory in the output directory per experiment with the same name as to save the model checkpoints. If <extra-args> are different from the ones that are defined in <config>, the output directory name will reflect the difference.

A config file is saved into each experiment directory so that they can be loaded if <path> is the address to that directory.

Example

After running

python train.py --cfg experiments/cfgs/gans/mnist.yml --is_train

output/gans/mnist will be created.

[optional] Save reconstructions and datasets into cache:

python train.py --cfg experiments/cfgs/<config> --save_recs
python train.py --cfg experiments/cfgs/<config> --save_ds

Example

After running the training code for mnist, the reconstructions and the dataset can be saved with:

python train.py --cfg output/gans/mnist --save_recs
python train.py --cfg output/gans/mnist --save_ds

As training goes on, sample outputs of the generator are written to debug/gans/<model_config>.

Black-box attacks

To perform black-box experiments run blackbox.py [Table 1 and 2 of the paper]:

python blackbox.py --cfg <path> \
    --results_dir <results_path> \
    --bb_model {A, B, C, D, E} \
    --sub_model {A, B, C, D, E} \
    --fgsm_eps <epsilon> \
    --defense_type {none|defense_gan|adv_tr}
    [--train_on_recs or --online_training]
    <optional-arguments>
  • --cfg is the path to the config file for training the iWGAN. This can also be the path to the output directory of the model.

  • --results_dir The path where the final results are saved in text files.

  • --bb_model The black-box model architectures that are used in Table 1 and Table 2.

  • --sub_model The substitute model architectures that are used in Table 1 and Table 2.

  • --defense_type specifies the type of defense to protect the classifier.

  • --train_on_recs or --online_training These parameters are optional. If they are set, the classifier will be trained on the reconstructions of Defense-GAN (e.g. in column Defense-GAN-Rec of Table 1 and 2). Otherwise, the results are for Defense-GAN-Orig. Note --online_training will take a while if --rec_iters, or L in the paper, is set to a large value.

  • <optional-arguments> A list of --<arg_name> <arg_val> that are the same as the hyperparemeters that are defined in config files (all lower case), and also a list of flags in blackbox.py. The most important ones are:

    • --rec_iters The number of GD reconstruction iterations for Defense-GAN, or L in the paper.
    • --rec_lr The learning rate of the reconstruction step.
    • --rec_rr The number of random restarts for the reconstruction step, or R in the paper.
    • --num_train The number of images to train the black-box model on. For debugging purposes set this to a small value.
    • --num_test The number of images to test on. For debugging purposes set this to a small value.
    • --debug This will save qualitative attack and reconstruction results in debug directory and will not run the adversarial attack part of the code.
  • Refer to blackbox.py for more flag descriptions.

Example

  • Row 1 of Table 1 Defense-GAN-Orig:
python blackbox.py --cfg output/gans/mnist \
    --results_dir defensegan \
    --bb_model A \
    --sub_model B \
    --fgsm_eps 0.3 \
    --defense_type defense_gan
  • If you set --nb_epochs 1 --nb_epochs_s 1 --data_aug 1 you will get a quick glance of how the script works.

White-box attacks

To test Defense-GAN for white-box attacks run whitebox.py [Tables 4, 5, 12 of the paper]:

python whitebox.py --cfg <path> \
       --results_dir <results-dir> \
       --attack_type {fgsm, rand_fgsm, cw} \
       --defense_type {none|defense_gan|adv_tr} \
       --model {A, B, C, D} \
       [--train_on_recs or --online_training]
       <optional-arguments>
  • --cfg is the path to the config file for training the iWGAN. This can also be the path to the output directory of the model.
  • --results_dir The path where the final results are saved in text files.
  • --defense_type specifies the type of defense to protect the classifier.
  • --train_on_recs or --online_training These parameters are optional. If they are set, the classifier will be trained on the reconstructions of Defense-GAN (e.g. in column Defense-GAN-Rec of Table 1 and 2). Otherwise, the results are for Defense-GAN-Orig. Note --online_training will take a while if --rec_iters, or L in the paper, is set to a large value.
  • <optional-arguments> A list of --<arg_name> <arg_val> that are the same as the hyperparemeters that are defined in config files (all lower case), and also a list of flags in whitebox.py. The most important ones are:
    • --rec_iters The number of GD reconstruction iterations for Defense-GAN, or L in the paper.
    • --rec_lr The learning rate of the reconstruction step.
    • --rec_rr The number of random restarts for the reconstruction step, or R in the paper.
    • --num_test The number of images to test on. For debugging purposes set this to a small value.
  • Refer to whitebox.py for more flag descriptions.

Example

First row of Table 4:

python whitebox.py --cfg <path> \
       --results_dir whitebox \
       --attack_type fgsm \
       --defense_type defense_gan \
       --model A
  • If you want to quickly see how the scripts work, add the following flags:
--nb_epochs 1 --num_tests 400
Owner
Maya Kabkab
Maya Kabkab
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023