Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

Overview

CrossViT

This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv

If you use the codes and models from this repo, please cite our work. Thanks!

@inproceedings{
    chen2021crossvit,
    title={{CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification}},
    author={Chun-Fu (Richard) Chen and Quanfu Fan and Rameswar Panda},
    booktitle={International Conference on Computer Vision (ICCV)},
    year={2021}
}

Installation

To install requirements:

pip install -r requirements.txt

With conda:

conda create -n crossvit python=3.8
conda activate crossvit
conda install pytorch=1.7.1 torchvision  cudatoolkit=11.0 -c pytorch -c nvidia
pip install -r requirements.txt

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Pretrained models

We provide models trained on ImageNet1K. You can find models here. And you can load pretrained weights into models by add --pretrained flag.

Training

To train crossvit_9_dagger_224 on ImageNet on a single node with 8 gpus for 300 epochs run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model crossvit_9_dagger_224 --batch-size 256 --data-path /path/to/imagenet

Other model names can be found at models/crossvit.py.

Multinode training

Distributed training is available via Slurm and submitit:

To train a crossvit_9_dagger_224 model on ImageNet on 4 nodes with 8 gpus each for 300 epochs:

python run_with_submitit.py --nodes 4 --model crossvit_9_dagger_224 --data-path /path/to/imagenet --batch-size 128 --warmup-epochs 30

Or you can start process on each machine maunally. E.g. 2 nodes, each with 8 gpus.

Machine 0:

python -m torch.distributed.launch --nproc_per_node=8 --master_addr=MACHINE_0_IP --master_port=AVAILABLE_PORT --nnodes=2 --node_rank=0 main.py --model crossvit_9_dagger_224 --batch-size 256 --data-path /path/to/imagenet

Machine 1:

python -m torch.distributed.launch --nproc_per_node=8 --master_addr=MACHINE_0_IP --master_port=AVAILABLE_PORT --nnodes=2 --node_rank=1 main.py --model crossvit_9_dagger_224 --batch-size 256 --data-path /path/to/imagenet

Note that: some slurm configurations might need to be changed based on your cluster.

Evaluation

To evaluate a pretrained model on crossvit_9_dagger_224:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model crossvit_9_dagger_224 --batch-size 128 --data-path /path/to/imagenet --eval --pretrained
You might also like...
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

Official implementation of
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Official implementation of paper
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Comments
  • Multilabel classification

    Multilabel classification

    @jjasghar @krook @chunfuchen thanks a lot for sharing the code , i have a problem statement which i want to train crossvit on please find the details below

    1. input is of image shape 256x128 having label vector as gt for multilabel classification
    2. can i use crossvit to train the model , what all modification has to be done with the code base ??

    THnaks for the support

    opened by abhigoku10 4
  • Honoring distributed flag + fixing reset_classifier

    Honoring distributed flag + fixing reset_classifier

    1. Honoring the args.distributed flag in calls to evaluate().
    2. A couple of changes to make the reset_classifier() method work:
    • Initializing the embed_dim instance variable in VisionTransformer.
    • Reinitializing the classification head for all branches.
    opened by abhrac 1
  • Parameter setting

    Parameter setting

    Hello, thank you for your excellent work, I would like to know how you set the parameters on the CIFAR10 dataset, mainly the size of the patch,Looking forward to your reply

    opened by happy20200 1
Owner
International Business Machines
International Business Machines
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
Good Classification Measures and How to Find Them

Good Classification Measures and How to Find Them This repository contains supplementary materials for the paper "Good Classification Measures and How

Yandex Research 7 Nov 13, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022