This repository has a implementations of data augmentation for NLP for Japanese.

Related tags

Text Data & NLPdaaja
Overview

daaja

This repository has a implementations of data augmentation for NLP for Japanese:

Install

pip install daaja

How to use

EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks

Command

python -m aug_ja.eda.run --input input.tsv --output data_augmentor.tsv

The format of input.tsv is as follows:

1	この映画はとてもおもしろい
0	つまらない映画だった

In Python

from aug_ja.eda import EasyDataAugmentor
augmentor = EasyDataAugmentor(alpha_sr=0.1, alpha_ri=0.1, alpha_rs=0.1, p_rd=0.1, num_aug=4)
text = "日本語でデータ拡張を行う"
aug_texts = augmentor.augments(text)
print(aug_texts)
# ['日本語でを拡張データ行う', '日本語でデータ押広げるを行う', '日本語でデータ拡張を行う', '日本語で智見拡張を行う', '日本語でデータ拡張を行う']

An Analysis of Simple Data Augmentation for Named Entity Recognition

Command

python -m aug_ja.ner_sda.run --input input.tsv --output data_augmentor.tsv

The format of input.tsv is as follows:

	O
	O
田中	B-PER
	O
いい	O
ます	O

In Python

from daaja.ner_sda import SimpleDataAugmentationforNER
tokens_list = [
    ["私", "は", "田中", "と", "いい", "ます"],
    ["筑波", "大学", "に", "所属", "して", "ます"],
    ["今日", "から", "筑波", "大学", "に", "通う"],
    ["茨城", "大学"],
]
labels_list = [
    ["O", "O", "B-PER", "O", "O", "O"],
    ["B-ORG", "I-ORG", "O", "O", "O", "O"],
    ["B-DATE", "O", "B-ORG", "I-ORG", "O", "O"],
    ["B-ORG", "I-ORG"],
]
augmentor = SimpleDataAugmentationforNER(tokens_list=tokens_list, labels_list=labels_list,
                                            p_power=1, p_lwtr=1, p_mr=1, p_sis=1, p_sr=1, num_aug=4)
tokens = ["吉田", "さん", "は", "株式", "会社", "A", "に", "出張", "予定", "だ"]
labels = ["B-PER", "O", "O", "B-ORG", "I-ORG", "I-ORG", "O", "O", "O", "O"]
augmented_tokens_list, augmented_labels_list = augmentor.augments(tokens, labels)
print(augmented_tokens_list)
# [['吉田', 'さん', 'は', '株式', '会社', 'A', 'に', '出張', '志す', 'だ'],
#  ['吉田', 'さん', 'は', '株式', '大学', '大学', 'に', '出張', '予定', 'だ'],
#  ['吉田', 'さん', 'は', '株式', '会社', 'A', 'に', '出張', '予定', 'だ'],
#  ['吉田', 'さん', 'は', '筑波', '大学', 'に', '出張', '予定', 'だ'],
#  ['吉田', 'さん', 'は', '株式', '会社', 'A', 'に', '出張', '予定', 'だ']]
print(augmented_labels_list)
# [['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O']]

Reference

Comments
  • too many progress bars

    too many progress bars

    When I use EasyDataAugmentor in the train process, there are too many progress bars in the console.

    So, can you make this line 19 tqdm selectable on-off when we define EasyDataAugmentor? https://github.com/kajyuuen/daaja/blob/12835943868d43f5c248cf1ea87ab60f67a6e03d/daaja/flows/sequential_flow.py#L19

    opened by Yongtae723 6
  • from daaja.methods.eda.easy_data_augmentor import EasyDataAugmentorにてエラー

    from daaja.methods.eda.easy_data_augmentor import EasyDataAugmentorにてエラー

    daajaをpipインストール後、from daaja.methods.eda.easy_data_augmentor import EasyDataAugmentorを行うと、 以下のエラーとなる。 ConnectionError: HTTPConnectionPool(host='compling.hss.ntu.edu.sg', port=80): Max retries exceeded with url: /wnja/data/1.1/wnjpn.db.gz (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f3b6a6cced0>: Failed to establish a new connection: [Errno 110] Connection timed out'))

    opened by naoki1213mj 5
  • is it possible to use on GPU device?

    is it possible to use on GPU device?

    Hi!

    thank you for the great library. when I train with this augmentation, this takes so much more time than forward and backward process.

    therefore, can we possibly use this augmentation on GPU to save time?

    thank you

    opened by Yongtae723 3
  • Bump joblib from 1.1.0 to 1.2.0

    Bump joblib from 1.1.0 to 1.2.0

    Bumps joblib from 1.1.0 to 1.2.0.

    Changelog

    Sourced from joblib's changelog.

    Release 1.2.0

    • Fix a security issue where eval(pre_dispatch) could potentially run arbitrary code. Now only basic numerics are supported. joblib/joblib#1327

    • Make sure that joblib works even when multiprocessing is not available, for instance with Pyodide joblib/joblib#1256

    • Avoid unnecessary warnings when workers and main process delete the temporary memmap folder contents concurrently. joblib/joblib#1263

    • Fix memory alignment bug for pickles containing numpy arrays. This is especially important when loading the pickle with mmap_mode != None as the resulting numpy.memmap object would not be able to correct the misalignment without performing a memory copy. This bug would cause invalid computation and segmentation faults with native code that would directly access the underlying data buffer of a numpy array, for instance C/C++/Cython code compiled with older GCC versions or some old OpenBLAS written in platform specific assembly. joblib/joblib#1254

    • Vendor cloudpickle 2.2.0 which adds support for PyPy 3.8+.

    • Vendor loky 3.3.0 which fixes several bugs including:

      • robustly forcibly terminating worker processes in case of a crash (joblib/joblib#1269);

      • avoiding leaking worker processes in case of nested loky parallel calls;

      • reliability spawn the correct number of reusable workers.

    Release 1.1.1

    • Fix a security issue where eval(pre_dispatch) could potentially run arbitrary code. Now only basic numerics are supported. joblib/joblib#1327
    Commits
    • 5991350 Release 1.2.0
    • 3fa2188 MAINT cleanup numpy warnings related to np.matrix in tests (#1340)
    • cea26ff CI test the future loky-3.3.0 branch (#1338)
    • 8aca6f4 MAINT: remove pytest.warns(None) warnings in pytest 7 (#1264)
    • 067ed4f XFAIL test_child_raises_parent_exits_cleanly with multiprocessing (#1339)
    • ac4ebd5 MAINT add back pytest warnings plugin (#1337)
    • a23427d Test child raises parent exits cleanly more reliable on macos (#1335)
    • ac09691 [MAINT] various test updates (#1334)
    • 4a314b1 Vendor loky 3.2.0 (#1333)
    • bdf47e9 Make test_parallel_with_interactively_defined_functions_default_backend timeo...
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Implement Data Augmentation using Pre-trained Transformer Models

    Implement Data Augmentation using Pre-trained Transformer Models

    opened by kajyuuen 0
  • Implement Contextual Augmentation

    Implement Contextual Augmentation

    opened by kajyuuen 0
  • Implement MixText

    Implement MixText

    opened by kajyuuen 0
Releases(v0.0.7)
Owner
Koga Kobayashi
Koga Kobayashi
wxPython app for converting encodings, modifying and fixing SRT files

Subtitle Converter Program za obradu srt i txt fajlova. Requirements: Python version 3.8 wxPython version 4.1.0 or newer Libraries: srt, PyDispatcher

4 Nov 25, 2022
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

Awni Hannun 647 Dec 25, 2022
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
Almost State-of-the-art Text Generation library

Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build

Emeka boris ama 63 Jun 24, 2022
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Yixuan Su 26 Oct 17, 2022
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 40 Dec 11, 2022
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023
Pretrained Japanese BERT models

Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod

Inui Laboratory 387 Dec 30, 2022
NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels

NumPy String-Indexed NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels, rather than conventio

Aitan Grossman 1 Jan 08, 2022
Hostapd-mac-tod-acl - Setup a hostapd AP with MAC ToD ACL

A brief explanation This script provides a quick way to setup a Time-of-day (Tod

2 Feb 03, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
Constituency Tree Labeling Tool

Constituency Tree Labeling Tool The purpose of this package is to solve the constituency tree labeling problem. Look from the dataset labeled by NLTK,

张宇 6 Dec 20, 2022