Pretrained Japanese BERT models

Overview

Pretrained Japanese BERT models

This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face.

For information on the previous versions of our pretrained models, see the v1.0 tag of this repository.

Model Architecture

The architecture of our models are the same as the original BERT models proposed by Google.

  • BERT-base models consist of 12 layers, 768 dimensions of hidden states, and 12 attention heads.
  • BERT-large models consist of 24 layers, 1024 dimensions of hidden states, and 16 attention heads.

Training Data

The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Wikipedia Cirrussearch dump file as of August 31, 2020.

The generated corpus files are 4.0GB in total, consisting of approximately 30M sentences. We used the MeCab morphological parser with mecab-ipadic-NEologd dictionary to split texts into sentences.

$WORK_DIR/corpus/jawiki-20200831/corpus_sampled.txt">
$ WORK_DIR="$HOME/work/bert-japanese"

$ python make_corpus_wiki.py \
--input_file jawiki-20200831-cirrussearch-content.json.gz \
--output_file $WORK_DIR/corpus/jawiki-20200831/corpus.txt \
--min_text_length 10 \
--max_text_length 200 \
--mecab_option "-r $HOME/local/etc/mecabrc -d $HOME/local/lib/mecab/dic/mecab-ipadic-neologd-v0.0.7"

# Split corpus files for parallel preprocessing of the files
$ python merge_split_corpora.py \
--input_files $WORK_DIR/corpus/jawiki-20200831/corpus.txt \
--output_dir $WORK_DIR/corpus/jawiki-20200831 \
--num_files 8

# Sample some lines for training tokenizers
$ cat $WORK_DIR/corpus/jawiki-20200831/corpus.txt|grep -v '^$'|shuf|head -n 1000000 \
> $WORK_DIR/corpus/jawiki-20200831/corpus_sampled.txt

Tokenization

For each of BERT-base and BERT-large, we provide two models with different tokenization methods.

  • For wordpiece models, the texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768.
  • For character models, the texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into characters. The vocabulary size is 6144.

We used fugashi and unidic-lite packages for the tokenization.

$WORK_DIR/tokenizers/jawiki-20200831/character/vocab.txt">
$ WORK_DIR="$HOME/work/bert-japanese"

# WordPiece (unidic_lite)
$ TOKENIZERS_PARALLELISM=false python train_tokenizer.py \
--input_files $WORK_DIR/corpus/jawiki-20200831/corpus_sampled.txt \
--output_dir $WORK_DIR/tokenizers/jawiki-20200831/wordpiece_unidic_lite \
--tokenizer_type wordpiece \
--mecab_dic_type unidic_lite \
--vocab_size 32768 \
--limit_alphabet 6129 \
--num_unused_tokens 10

# Character
$ head -n 6144 $WORK_DIR/tokenizers/jawiki-20200831/wordpiece_unidic_lite/vocab.txt \
> $WORK_DIR/tokenizers/jawiki-20200831/character/vocab.txt

Training

The models are trained with the same configuration as the original BERT; 512 tokens per instance, 256 instances per batch, and 1M training steps. For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once.

For training of each model, we used a v3-8 instance of Cloud TPUs provided by TensorFlow Research Cloud program. The training took about 5 days and 14 days for BERT-base and BERT-large models, respectively.

Creation of the pretraining data

$ WORK_DIR="$HOME/work/bert-japanese"

# WordPiece (unidic_lite)
$ mkdir -p $WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data
# It takes 3h and 420GB RAM, producing 43M instances
$ seq -f %02g 1 8|xargs -L 1 -I {} -P 8 python create_pretraining_data.py \
--input_file $WORK_DIR/corpus/jawiki-20200831/corpus_{}.txt \
--output_file $WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data/pretraining_data_{}.tfrecord.gz \
--vocab_file $WORK_DIR/tokenizers/jawiki-20200831/wordpiece_unidic_lite/vocab.txt \
--tokenizer_type wordpiece \
--mecab_dic_type unidic_lite \
--do_whole_word_mask \
--gzip_compress \
--max_seq_length 512 \
--max_predictions_per_seq 80 \
--dupe_factor 10

# Character
$ mkdir $WORK_DIR/bert/jawiki-20200831/character/pretraining_data
# It takes 4h10m and 615GB RAM, producing 55M instances
$ seq -f %02g 1 8|xargs -L 1 -I {} -P 8 python create_pretraining_data.py \
--input_file $WORK_DIR/corpus/jawiki-20200831/corpus_{}.txt \
--output_file $WORK_DIR/bert/jawiki-20200831/character/pretraining_data/pretraining_data_{}.tfrecord.gz \
--vocab_file $WORK_DIR/tokenizers/jawiki-20200831/character/vocab.txt \
--tokenizer_type character \
--mecab_dic_type unidic_lite \
--do_whole_word_mask \
--gzip_compress \
--max_seq_length 512 \
--max_predictions_per_seq 80 \
--dupe_factor 10

Training of the models

Note: all the necessary files need to be stored in a Google Cloud Storage (GCS) bucket.

# BERT-base, WordPiece (unidic_lite)
$ ctpu up -name tpu01 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-base" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-base/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=1e-4 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu01

# BERT-base, Character
$ ctpu up -name tpu02 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/character/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/character/bert-base" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/character/bert-base/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=1e-4 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu02

# BERT-large, WordPiece (unidic_lite)
$ ctpu up -name tpu03 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-large" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-large/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=5e-5 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu03

# BERT-large, Character
$ ctpu up -name tpu04 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/character/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/character/bert-large" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/character/bert-large/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=5e-5 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu04

Licenses

The pretrained models are distributed under the terms of the Creative Commons Attribution-ShareAlike 3.0.

The codes in this repository are distributed under the Apache License 2.0.

Related Work

Acknowledgments

The models are trained with Cloud TPUs provided by TensorFlow Research Cloud program.

Owner
Inui Laboratory
Inui Laboratory, Tohoku University
Inui Laboratory
An extension for asreview implements a version of the tf-idf feature extractor that saves the matrix and the vocabulary.

Extension - matrix and vocabulary extractor for TF-IDF and Doc2Vec An extension for ASReview that adds a tf-idf extractor that saves the matrix and th

ASReview 4 Jun 17, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
wxPython app for converting encodings, modifying and fixing SRT files

Subtitle Converter Program za obradu srt i txt fajlova. Requirements: Python version 3.8 wxPython version 4.1.0 or newer Libraries: srt, PyDispatcher

4 Nov 25, 2022
Code for the Python code smells video on the ArjanCodes channel.

7 Python code smells This repository contains the code for the Python code smells video on the ArjanCodes channel (watch the video here). The example

55 Dec 29, 2022
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
📔️ Generate a text-based journal from a template file.

JGen 📔️ Generate a text-based journal from a template file. Contents Getting Started Example Overview Usage Details Reserved Keywords Gotchas Getting

Harrison Broadbent 21 Sep 25, 2022
This repository has a implementations of data augmentation for NLP for Japanese.

daaja This repository has a implementations of data augmentation for NLP for Japanese: EDA: Easy Data Augmentation Techniques for Boosting Performance

Koga Kobayashi 60 Nov 11, 2022
YACLC - Yet Another Chinese Learner Corpus

汉语学习者文本多维标注数据集YACLC V1.0 中文 | English 汉语学习者文本多维标注数据集(Yet Another Chinese Learner

BLCU-ICALL 47 Dec 15, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Dec 30, 2022
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Code associated with the Don't Stop Pretraining ACL 2020 paper

dont-stop-pretraining Code associated with the Don't Stop Pretraining ACL 2020 paper Citation @inproceedings{dontstoppretraining2020, author = {Suchi

AI2 449 Jan 04, 2023
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021