Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Overview

Reconstruct handwritten characters from brains using GANs

Example code for the paper "Generative adversarial networks for reconstructing natural images from brain activity".

Method for reconstructing images from brain activity with GANs. You need a GAN that is trained for reproducing the target distribution (images that look like your stimuli) and a differentiable method for doing perceptual feature matching (here: layer activations of a convolutional neural network).

The method uses linear regression implemented as a neural network to predict the latent space z. Losses are calculated in image space and backpropagated through the loss terms and the GAN over z to the weights of the linear regression layer.

Usage notes

... for the handwritten characters example:

  1. Run train_linear_model.py, preferably on a GPU. This will produce ./recon/finalZ.mat which contains z predictions on your validation set.

  2. Run reconstruct_from_z.py to generate a PNG with reconstructions of the validation data in ./recon/recons.png.

... for your own data:

  1. Train a GAN for your stimulus domain (e.g. natural grayscale images of size [64 64]). During training z should be drawn from a uniform distribution in [-1 1] and normalized (see sample_z() in model_dcgan_G.py).

  2. Train a differentiable network for feature matching. The training code for the AlexNet used for handwritten digits can be found in ./featurematching/train_featurematching_handwritten.py.

  3. Adapt some parameters in args.py and train_linear_model.py (and hopefully little of the rest). Fine-tune the weights for the loss terms on an isolated data set.

  4. You should be able to just run train_linear_model.py then.

Requirements

  • Anaconda Python 2.7 version

  • chainer version 1.24 (install via: pip install chainer==1.24 --no-cache-dir -vvvv)

  • A GPU for training the feature matching network

Usage conditions

If you publish using this code or use it in any other way, please cite:

Seeliger, K., Güçlü, U., Ambrogioni, L., Güçlütürk, Y., & van Gerven, M. A. J. (2018). Generative adversarial networks for reconstructing natural images from brain activity. NeuroImage.

Please notify the corresponding author in addition.

Owner
K. Seeliger
K. Seeliger
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡

Translations 🇩🇪 DE 🇫🇷 FR 🇭🇺 HU 🇮🇩 ID 🇮🇹 IT 🇳🇱 NL 🇧🇷 PT-BR 🇷🇺 RU 🇨🇳 ZH ➡️ Documentation | Discord | Installation Guide ⬅️ Fully autom

11.2k Jan 05, 2023
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
中文問句產生器;使用台達電閱讀理解資料集(DRCD)

Transformer QG on DRCD The inputs of the model refers to we integrate C and A into a new C' in the following form. C' = [c1, c2, ..., [HL], a1, ..., a

Philip 1 Oct 22, 2021
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Transformers and related deep network architectures are summarized and implemented here.

Transformers: from NLP to CV This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV) Introduct

Ibrahim Sobh 138 Dec 27, 2022
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
Multispeaker & Emotional TTS based on Tacotron 2 and Waveglow

This Repository contains a sample code for Tacotron 2, WaveGlow with multi-speaker, emotion embeddings together with a script for data preprocessing.

Ivan Didur 106 Jan 01, 2023
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Maha is a text processing library specially developed to deal with Arabic text.

An Arabic text processing library intended for use in NLP applications Maha is a text processing library specially developed to deal with Arabic text.

Mohammad Al-Fetyani 184 Nov 27, 2022
A CSRankings-like index for speech researchers

Speech Rankings This project mimics CSRankings to generate an ordered list of researchers in speech/spoken language processing along with their possib

Mutian He 19 Nov 26, 2022
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
NLP: SLU tagging

NLP: SLU tagging

北海若 3 Jan 14, 2022
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
Speech to text streamlit app

Speech to text Streamlit-app! 👄 This speech to text recognition is powered by t

Charly Wargnier 9 Jan 01, 2023
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

Yongliang Shen 45 Nov 29, 2022