Official Repository for the paper "Improving Baselines in the Wild".

Related tags

Deep Learningwilds
Overview

iWildCam and FMoW baselines (WILDS)

This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed)

For general instructions, please refer to the original repositiory.

This repository contains code used to produce experimental results presented in:

Improving Baselines in the Wild

Apart from minor edits, the only main changes we introduce are:

  • --validate_every flag (default: 1000) to specify the frequency (number of training steps) of cross-validation/checkpoint tracking.
  • sub_val_metric option in the dataset (see examples/configs/datasets.py) to specify a secondary metric to be tracked during training. This activates additional cross-validation and checkpoint tracking for the specified metric.

Results

NB: To reproduce the numbers from the paper, the right PyTorch version must be used. All our experiments have been conducted using 1.9.0+cu102, except for + higher lr rows in Table 2/FMoW (which we ran for the camera-ready and for the public release) for which 1.10.0+cu102 was used.

The training scripts, logs, and model checkpoints for the best configurations from our experiments can be found here for iWildCam & FMoW.

iWildCam

CV based on "Valid F1"

Split / Metric mean (std) 3 runs
IID Valid Acc 82.5 (0.8) [0.817, 0.835, 0.822]
IID Valid F1 46.7 (1.0) [0.456, 0.481, 0.464]
IID Test Acc 76.2 (0.1) [0.762, 0.763, 0.761]
IID Test F1 47.9 (2.1) [0.505, 0.479, 0.453]
Valid Acc 64.1 (1.7) [0.644, 0.619, 0.661]
Valid F1 38.3 (0.9) [0.39, 0.371, 0.389]
Test Acc 69.0 (0.3) [0.69, 0.694, 0.687]
Test F1 32.1 (1.2) [0.338, 0.31, 0.314]

CV based on "Valid Acc"

Split / Metric mean (std) 3 runs
IID Valid Acc 82.6 (0.7) [0.836, 0.821, 0.822]
IID Valid F1 46.2 (0.9) [0.472, 0.45, 0.464]
IID Test Acc 75.8 (0.4) [0.76, 0.753, 0.761]
IID Test F1 44.9 (0.4) [0.444, 0.45, 0.453]
Valid Acc 66.6 (0.4) [0.666, 0.672, 0.661]
Valid F1 36.6 (2.1) [0.369, 0.339, 0.389]
Test Acc 68.6 (0.3) [0.688, 0.682, 0.687]
Test F1 28.7 (2.0) [0.279, 0.268, 0.314]

FMoW

CV based on "Valid Region"

Split / Metric mean (std) 3 runs
IID Valid Acc 63.9 (0.2) [0.64, 0.636, 0.641]
IID Valid Region 62.2 (0.5) [0.623, 0.616, 0.628]
IID Valid Year 49.8 (1.8) [0.52, 0.475, 0.5]
IID Test Acc 62.3 (0.2) [0.626, 0.621, 0.621]
IID Test Region 60.9 (0.6) [0.617, 0.603, 0.606]
IID Test Year 43.2 (1.1) [0.438, 0.417, 0.442]
Valid Acc 62.1 (0.0) [0.62, 0.621, 0.621]
Valid Region 52.5 (1.0) [0.538, 0.513, 0.524]
Valid Year 60.5 (0.2) [0.602, 0.605, 0.608]
Test Acc 55.6 (0.2) [0.555, 0.554, 0.558]
Test Region 34.8 (1.5) [0.369, 0.334, 0.34]
Test Year 50.2 (0.4) [0.499, 0.498, 0.508]

CV based on "Valid Acc"

Split / Metric mean (std) 3 runs
IID Valid Acc 64.0 (0.1) [0.641, 0.639, 0.641]
IID Valid Region 62.3 (0.4) [0.623, 0.617, 0.628]
IID Valid Year 50.8 (0.6) [0.514, 0.509, 0.5]
IID Test Acc 62.3 (0.4) [0.628, 0.62, 0.621]
IID Test Region 61.1 (0.6) [0.62, 0.608, 0.606]
IID Test Year 43.6 (1.4) [0.45, 0.417, 0.442]
Valid Acc 62.1 (0.0) [0.621, 0.621, 0.621]
Valid Region 51.4 (1.3) [0.522, 0.496, 0.524]
Valid Year 60.6 (0.3) [0.608, 0.601, 0.608]
Test Acc 55.6 (0.2) [0.556, 0.554, 0.558]
Test Region 34.2 (1.2) [0.357, 0.329, 0.34]
Test Year 50.2 (0.5) [0.496, 0.501, 0.508]

BibTex

@inproceedings{irie2021improving,
      title={Improving Baselines in the Wild}, 
      author={Kazuki Irie and Imanol Schlag and R\'obert Csord\'as and J\"urgen Schmidhuber},
      booktitle={Workshop on Distribution Shifts, NeurIPS},
      address={Virtual only},
      year={2021}
}
Owner
Kazuki Irie
Kazuki Irie
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022